forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb_service_rec.py
87 lines (74 loc) · 3.14 KB
/
web_service_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
from ocr_reader import OCRReader, DetResizeForTest, ArgsParser
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
_LOGGER = logging.getLogger()
class RecOp(Op):
def init_op(self):
self.ocr_reader = OCRReader(
char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
raw_im = base64.b64decode(input_dict["image"].encode('utf8'))
data = np.fromstring(raw_im, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
feed_list = []
max_wh_ratio = 0
## Many mini-batchs, the type of feed_data is list.
max_batch_size = 6 # len(dt_boxes)
# If max_batch_size is 0, skipping predict stage
if max_batch_size == 0:
return {}, True, None, ""
boxes_size = max_batch_size
rem = boxes_size % max_batch_size
h, w = im.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
_, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape
norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size)
norm_img = norm_img[np.newaxis, :]
feed = {"x": norm_img.copy()}
feed_list.append(feed)
return feed_list, False, None, ""
def postprocess(self, input_dicts, fetch_data, data_id, log_id):
res_list = []
if isinstance(fetch_data, dict):
if len(fetch_data) > 0:
rec_batch_res = self.ocr_reader.postprocess(
fetch_data, with_score=True)
for res in rec_batch_res:
res_list.append(res[0])
elif isinstance(fetch_data, list):
for one_batch in fetch_data:
one_batch_res = self.ocr_reader.postprocess(
one_batch, with_score=True)
for res in one_batch_res:
res_list.append(res[0])
res = {"res": str(res_list)}
return res, None, ""
class OcrService(WebService):
def get_pipeline_response(self, read_op):
rec_op = RecOp(name="rec", input_ops=[read_op])
return rec_op
uci_service = OcrService(name="ocr")
FLAGS = ArgsParser().parse_args()
uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict)
uci_service.run_service()