forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatic_model.py
105 lines (90 loc) · 3.95 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from net import MMoELayer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.feature_size = self.config.get("hyper_parameters.feature_size")
self.expert_num = self.config.get("hyper_parameters.expert_num")
self.gate_num = self.config.get("hyper_parameters.gate_num")
self.expert_size = self.config.get("hyper_parameters.expert_size")
self.tower_size = self.config.get("hyper_parameters.tower_size")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
def create_feeds(self, is_infer=False):
inputs = paddle.static.data(
name="input", shape=[-1, self.feature_size], dtype="float32")
label_income = paddle.static.data(
name="label_income", shape=[-1, 1], dtype="int64", lod_level=0)
label_marital = paddle.static.data(
name="label_marital", shape=[-1, 1], dtype="int64", lod_level=0)
if is_infer:
return [inputs, label_income, label_marital]
else:
return [inputs, label_income, label_marital]
def net(self, inputs, is_infer=False):
input_data = inputs[0]
label_income = inputs[1]
label_marital = inputs[2]
MMoE = MMoELayer(self.feature_size, self.expert_num, self.expert_size,
self.tower_size, self.gate_num)
pred_income, pred_marital = MMoE.forward(input_data)
pred_income_1 = paddle.slice(
pred_income, axes=[1], starts=[1], ends=[2])
pred_marital_1 = paddle.slice(
pred_marital, axes=[1], starts=[1], ends=[2])
auc_income, batch_auc_1, auc_states_1 = paddle.static.auc(
#auc_income = AUC(
input=pred_income,
label=paddle.cast(
x=label_income, dtype='int64'))
#auc_marital = AUC(
auc_marital, batch_auc_2, auc_states_2 = paddle.static.auc(
input=pred_marital,
label=paddle.cast(
x=label_marital, dtype='int64'))
if is_infer:
fetch_dict = {'auc_income': auc_income, 'auc_marital': auc_marital}
return fetch_dict
cost_income = paddle.nn.functional.log_loss(
input=pred_income_1,
label=paddle.cast(
label_income, dtype="float32"))
cost_marital = paddle.nn.functional.log_loss(
input=pred_marital_1,
label=paddle.cast(
label_marital, dtype="float32"))
avg_cost_income = paddle.mean(x=cost_income)
avg_cost_marital = paddle.mean(x=cost_marital)
cost = avg_cost_income + avg_cost_marital
self._cost = cost
fetch_dict = {
'cost': cost,
'auc_income': auc_income,
'auc_marital': auc_marital
}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)