forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
165 lines (135 loc) · 5.97 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import os
import paddle.nn as nn
import time
import logging
import sys
import importlib
import net
import numpy as np
__dir__ = os.path.dirname(os.path.abspath(__file__))
#sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from utils.utils_single import load_yaml, load_dy_model_class, get_abs_model, create_data_loader
from utils.save_load import save_model, load_model
from paddle.io import DistributedBatchSampler, DataLoader
import argparse
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description='paddle-rec run')
parser.add_argument("-m", "--config_yaml", type=str)
parser.add_argument("-o", "--opt", nargs='*', type=str)
args = parser.parse_args()
args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
args.config_yaml = get_abs_model(args.config_yaml)
return args
def create_feeds(batch_data, vocab_size):
all_label = paddle.to_tensor(np.arange(vocab_size).astype('int32'))
inputs = [
paddle.to_tensor(batch_data[i].numpy().astype('int32'))
for i in range(4)
]
inputs_word = batch_data[4].numpy()
return inputs, all_label, inputs_word
def create_model(config):
sparse_feature_number = config.get(
"hyper_parameters.sparse_feature_number")
sparse_feature_dim = config.get("hyper_parameters.sparse_feature_dim")
word2vec = net.Word2VecInferLayer(sparse_feature_number,
sparse_feature_dim, "emb")
return word2vec
def main(args):
paddle.seed(12345)
# load config
config = load_yaml(args.config_yaml)
dy_model_class = load_dy_model_class(args.abs_dir)
config["config_abs_dir"] = args.abs_dir
# tools.vars
use_gpu = config.get("runner.use_gpu", True)
test_data_dir = config.get("runner.test_data_dir", None)
print_interval = config.get("runner.print_interval", None)
model_load_path = config.get("runner.infer_load_path", "model_output")
start_epoch = config.get("runner.infer_start_epoch", 0)
end_epoch = config.get("runner.infer_end_epoch", 10)
vocab_size = config.get("hyper_parameters.sparse_feature_number", 10)
logger.info("**************common.configs**********")
logger.info(
"use_gpu: {}, test_data_dir: {}, start_epoch: {}, end_epoch: {}, print_interval: {}, model_load_path: {}".
format(use_gpu, test_data_dir, start_epoch, end_epoch, print_interval,
model_load_path))
logger.info("**************common.configs**********")
place = paddle.set_device('gpu' if use_gpu else 'cpu')
#dy_model = dy_model_class.create_model(config)
dy_model = create_model(config)
# to do : add optimizer function
#optimizer = dy_model_class.create_optimizer(dy_model, config)
logger.info("read data")
test_dataloader = create_data_loader(
config=config, place=place, mode="test")
epoch_begin = time.time()
interval_begin = time.time()
metric_list, metric_list_name = dy_model_class.create_metrics()
for epoch_id in range(start_epoch, end_epoch):
logger.info("load model epoch {}".format(epoch_id))
model_path = os.path.join(model_load_path, str(epoch_id))
load_model(model_path, dy_model)
dy_model.eval()
accum_num_sum = 0
accum_num = 0
for batch_id, batch in enumerate(test_dataloader()):
batch_size = len(batch[0])
inputs, all_label, inputs_word = create_feeds(batch, vocab_size)
label = inputs[3].numpy()
val, pred_idx = dy_model.forward(inputs[0], inputs[1], inputs[2],
all_label)
pre = pred_idx.numpy()
for ii in range(len(label)):
top4 = pre[ii][0]
accum_num_sum += 1
for idx in top4:
if int(idx) in inputs_word[ii]:
continue
if int(idx) == int(label[ii][0]):
accum_num += 1
break
if batch_id % print_interval == 0:
logger.info(
"infer epoch: {}, batch_id: {}, acc: {:.6f}, speed: {:.2f} ins/s".
format(epoch_id, batch_id, accum_num * 1.0 / accum_num_sum,
print_interval * batch_size / (time.time() -
interval_begin)))
interval_begin = time.time()
logger.info("infer epoch: {} done, acc: {:.6f}, : epoch time{:.2f} s".
format(epoch_id, accum_num * 1.0 / accum_num_sum,
time.time() - epoch_begin))
epoch_begin = time.time()
if __name__ == '__main__':
args = parse_args()
main(args)