-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathimage.py
132 lines (112 loc) · 5.08 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import sys
from os import walk
import numpy as np
import torch
import cv2
import os
def saveImage(image, fileName, gamma = 2.2):
'''
save image to drive
:param image: float tensor [w, h, 3/4]
:param fileName: path to where to save the image
:param gamma: gamma correction
:return:
'''
import pyredner
pyredner.imwrite(image.cpu().detach(), fileName, gamma = gamma)
def overlayImage(background, image):
'''
overlay image on top of background image an image on a background image.
:param background: float tensor [width,height,3]
:param image: float tensor [width, height, 4]
:return: float tensor [width, height, 3]
'''
assert(torch.is_tensor(background) and torch.is_tensor(image) and background.dim() == 3 and image.dim() == 3 and background.shape[0] == image.shape[0] and background.shape[1] == image.shape[1])
assert(background.shape[-1] == 3 and image.shape[-1] == 4)
from torchvision import transforms
background = transforms.ToPILImage()(background.permute(2, 1, 0).clone().detach().cpu()).convert("RGB")
image = transforms.ToPILImage()(torch.clamp(image.permute(2, 1, 0), 0, 1).clone().detach().cpu()).convert("RGBA")
background.paste(image, (0, 0), image)
return transforms.ToTensor()(background).permute(2, 1, 0)
def resizeImage(image, targetResolution):
'''
resize an image (as numpy array) to the target resolution
:param image: numpy array [h, w, 4/3/1]
:param targetResolution: int > 0
:return: numpy array [h, w, 4/3/1]
'''
assert(image is not None and isinstance(image, np.ndarray) and len(image.shape) == 3 and image.shape[-1] == 3 or image.shape[-1] == 4 or image.shape[-1] == 1)
dmax = max(image.shape[0], image.shape[1])
if (dmax > targetResolution):
print("[INFO] resizing input image to fit:", targetResolution,"px resolution...")
if (image.shape[0] > image.shape[1]):
scale = float(targetResolution) / float(image.shape[0])
else:
scale = float(targetResolution) / float(image.shape[1])
img = cv2.resize(image, (int(image.shape[1] * scale), int(image.shape[0] * scale)), interpolation=cv2.INTER_CUBIC )
else:
return image
return img
class Image:
def __init__(self, path, device, maxRes = 512):
'''
class that represent a single image as a pytorch tensor [1, h, w, channels]
:param path: the path to the image
:param device: where to store the image ('cpu' or 'cuda')
:param maxRes: maximum allowed resolution (depending on the gpu/cpu memory and speed, this limit can be increased or removed)
'''
assert(maxRes > 0)
print('loading image from path: ', path)
self.device = device
numpyImage = cv2.imread(path)[..., 0:3]
assert (numpyImage is not None)
numpyImage = resizeImage(cv2.cvtColor(numpyImage, cv2.COLOR_BGR2RGB), int(maxRes))
self.tensor = (torch.from_numpy(numpyImage).to(self.device).to(dtype=torch.float32) / 255.0).unsqueeze(0)
self.height = numpyImage.shape[0]
self.width = numpyImage.shape[1]
self.channels = numpyImage.shape[2]
self.gamma = 2.2
self.center = torch.tensor([ self.width / 2, self.height / 2], dtype = torch.float32, device = self.device).reshape(1, -1)
self.imageName = os.path.basename(path)
class ImageFolder:
def __init__(self, path, device, maxRes = 512):
'''
class that represent images in a given path
:param path: the path to the image
:param device: where to store the image ('cpu' or 'cuda')
'''
print('loading images from path: ', path)
self.device = device
self.tensor = None
self.imageNames = []
supportedFormats = ['.jpg', '.jpeg', '.png']
filenames = next(walk(path), (None, None, []))[2]
width = None
height = None
ct = 0
assert (len(filenames) > 0) # no images found in the given directory
for filename in filenames:
if os.path.splitext(filename)[1].lower() in supportedFormats:
image = Image(path + '/' + filename, device, maxRes)
if width is None:
width = image.width
height = image.height
self.tensor = torch.zeros([len(filenames), height, width, image.channels], device = self.device)
self.center = torch.zeros([len(filenames), 2], device = self.device)
assert image.width == width and image.height == height
self.width = image.width
self.height = image.height
self.channels = image.channels
self.tensor[ct] = image.tensor[0].clone().detach()
self.center[ct] = image.center[0].clone().detach()
self.imageNames.append(image.imageName)
image = None
ct += 1
import gc
gc.collect()
self.gamma = 2.2
@property
def asNumpyArray(self):
return self.tensor.detach().cpu().numpy() * 255.0
if __name__ == "__main__":
pass