-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathlandmarksmediapipe.py
88 lines (74 loc) · 2.77 KB
/
landmarksmediapipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import mediapipe as mp
import numpy as np
import torch
import cv2
class LandmarksDetectorMediapipe:
def __init__(self, mask, device, is_video=False, refine_landmarks=False):
'''
init landmark detector with given mask on target device
:param mask: valid mask for the 468 landmarks of shape [n]
:param device:
:param is_video: set to true if passing frames sequentially in order
:param refine_landmarks: if the facemesh attention module should be applied. Note: requires mediapipe 0.10
'''
assert(mask.dim() == 1)
assert(mask.max().item() <= 467 and mask.min().item() >= 0)
self.device = device
mp_face_mesh = mp.solutions.face_mesh
if refine_landmarks:
try:
self.landmarksDetector = mp_face_mesh.FaceMesh(
static_image_mode=not is_video,
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
)
except KeyError:
raise KeyError('Refine landmarks is only available with the latest version of mediapipe')
else:
self.landmarksDetector = mp_face_mesh.FaceMesh(
static_image_mode=not is_video,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
)
self.mask = mask.to(self.device)
def detect(self, images):
'''
detect landmakrs on a batch of images
:param images: tensor [n, height, width, channels]
:return: tensor [n, landmarksNumber, 2]
'''
#landmarks = torch.zeros([images.shape[0], self.mask.shape[0], 2], device = images.device, dtype = torch.float32)
assert(images.dim() == 4)
landmarks = []
for i in range(len(images)):
land = self._detect((images[i].detach().cpu().numpy() * 255.0).astype('uint8'))
landmarks.append(land)
torch.set_grad_enabled(True) #it turns out that the landmark detector disables the autograd engine. this line fixes this
return torch.tensor(landmarks, device = self.device)
def _detect(self, image):
height, width, _ = image.shape
results = self.landmarksDetector.process(image)
mask = self.mask.detach().cpu().numpy()
multi_face_landmarks = results.multi_face_landmarks
if multi_face_landmarks:
face_landmarks = multi_face_landmarks[0]
landmarks = np.array(
[(lm.x * width, lm.y * height) for lm in face_landmarks.landmark]
)
else:
raise RuntimeError('No face was found in this image')
return landmarks[mask]
def drawLandmarks(self, image, landmarks):
'''
draw landmakrs on top of image (for debug)
:param image: tensor representing the image [h, w, channels]
:param landmarks: tensor representing the image landmarks [n, 2]
:return:
'''
assert(image.dim() == 3 and landmarks.dim() == 2 and landmarks.shape[-1] ==2)
clone = np.copy(image.detach().cpu().numpy() * 255.0)
land = landmarks.cpu().numpy()
for x in land:
cv2.circle(clone, (int(x[0]), int(x[1])), 1, (0, 0, 255), -1)
return clone