-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsetup.py
41 lines (35 loc) · 1.79 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 24 23:36:14 2020
@author: Abhilash
"""
from distutils.core import setup
setup(
name = 'BERTSimilarity',
packages = ['BERTSimilarity'],
version = '0.1',
license='MIT',
description = 'A BERT embedding library for sentence semantic similarity measurement.',
long_description='This is a sentence similarity measurement library using the forward pass of the BERT (bert-base-uncased) model. The spatial distance is computed using the cosine value between 2 semantic embedding vectors in low dimensional space. These vectors can be extracted by unique words as well as the sentence as a whole.The library also provides a flexibility for choosing any other approximators for spatial distance measurement for semantic similarity measurement.References include the BERT paper(https://arxiv.org/abs/1810.04805),Google Research BERT (https://github.com/google-research/bert/)',
author = 'ABHILASH MAJUMDER',
author_email = '[email protected]',
url = 'https://github.com/abhilash1910/BERTSimilarity',
download_url = 'https://github.com/abhilash1910/BERTSimilarity/archive/v_01.tar.gz',
keywords = ['Semantic Similarity','BERT','BERT Embeddings','BERT Transformer','Cosine Distance','Pytorch'],
install_requires=[
'numpy',
'torch',
'transformers',
'scipy',
],
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Topic :: Software Development :: Build Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
],
)