-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
200 lines (165 loc) · 8.68 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 2 13:01:03 2022
@author: Abhilash
"""
import numpy as np
import pandas as pd
from empyrical import sharpe_ratio
from matplotlib import pyplot as plt
import tensorflow as tf
class Portfolio:
def __init__(self, balance=100000):
self.initial_portfolio_value = balance
self.balance = balance
self.inventory = []
self.return_rates = []
self.portfolio_values = [balance]
self.buy_dates = []
self.sell_dates = []
def reset_portfolio(self):
self.balance = self.initial_portfolio_value
self.inventory = []
self.return_rates = []
self.portfolio_values = [self.initial_portfolio_value]
def sigmoid(x):
#try:
# return tf.math.sigmoid(x)
#except:
return 1/(1+np.exp(-x))
def softmax(x):
#try:
# return tf.nmath.softmax(x)
#except:
return np.exp(x) / np.sum(np.exp(x))
def stock_close_prices(key):
#extract data from S&P csv
prices = []
lines = open("data/" + key + ".csv", "r").read().splitlines()
for line in lines[1:]:
prices.append(float(line.split(",")[4]))
return prices
def generate_price_state(stock_prices, end_index, window_size):
'''
return a state representation, defined as
the adjacent stock price differences after sigmoid function (for the past window_size days up to end_date)
note that a state has length window_size, a period has length window_size+1
'''
start_index = end_index - window_size
if start_index >= 0:
period = stock_prices[start_index:end_index+1]
else:
period = -start_index * [stock_prices[0]] + stock_prices[0:end_index+1]
return sigmoid(np.diff(period))
def generate_portfolio_state(stock_price, balance, num_holding):
'''logarithmic values of stock price, portfolio balance, and number of holding stocks'''
return [np.log(stock_price), np.log(balance), np.log(num_holding + 1e-6)]
def generate_combined_state(end_index, window_size, stock_prices, balance, num_holding):
'''
return a state representation, defined as
adjacent stock prices differences after sigmoid function (for the past window_size days up to end_date) plus
logarithmic values of stock price at end_date, portfolio balance, and number of holding stocks
'''
prince_state = generate_price_state(stock_prices, end_index, window_size)
portfolio_state = generate_portfolio_state(stock_prices[end_index], balance, num_holding)
return np.array([np.concatenate((np.array(prince_state), np.array(portfolio_state)), axis=None)])
def treasury_bond_daily_return_rate():
r_year = 2.75 / 100 # approximate annual U.S. Treasury bond return rate
return (1 + r_year)**(1 / 365) - 1
def maximum_drawdown(portfolio_values):
end_index = np.argmax(np.maximum.accumulate(portfolio_values) - portfolio_values)
if end_index == 0:
return 0
beginning_idx= np.argmax(portfolio_values[:end_index])
return (portfolio_values[end_index] - portfolio_values[beginning_idx]) / portfolio_values[beginning_idx]
def evaluate_portfolio_performance(agent, logger):
portfolio_return = agent.portfolio_values[-1] - agent.initial_portfolio_value
logger.info("--------------------------------")
logger.info('Portfolio Value: ${:.2f}'.format(agent.portfolio_values[-1]))
logger.info('Portfolio Balance: ${:.2f}'.format(agent.balance))
logger.info('Portfolio Stocks Number: {}'.format(len(agent.inventory)))
logger.info('Total Return: ${:.2f}'.format(portfolio_return))
logger.info('Mean/Daily Return Rate: {:.3f}%'.format(np.mean(agent.return_rates) * 100))
logger.info('Sharpe Ratio adjusted with Treasury bond daily return: {:.3f}'.format(sharpe_ratio(np.array(agent.return_rates)), risk_free=treasury_bond_daily_return_rate()))
logger.info('Maximum Drawdown: {:.3f}%'.format(maximum_drawdown(agent.portfolio_values) * 100))
logger.info("--------------------------------")
return portfolio_return
def plot_portfolio_transaction_history(stock_name, agent):
portfolio_return = agent.portfolio_values[-1] - agent.initial_portfolio_value
df = pd.read_csv('./data/{}.csv'.format(stock_name))
buy_prices = [df.iloc[t, 4] for t in agent.buy_dates]
sell_prices = [df.iloc[t, 4] for t in agent.sell_dates]
plt.figure(figsize=(15, 5), dpi=100)
plt.title('{} Total Return on {}: ${:.2f}'.format(agent.model_type, stock_name, portfolio_return))
plt.plot(df['Date'], df['Close'], color='black', label=stock_name)
plt.scatter(agent.buy_dates, buy_prices, c='green', alpha=0.5, label='buy')
plt.scatter(agent.sell_dates, sell_prices,c='red', alpha=0.5, label='sell')
plt.xticks(np.linspace(0, len(df), 10))
plt.ylabel('Price')
plt.legend()
plt.grid()
plt.show()
def buy_and_hold_benchmark(stock_name, agent):
df = pd.read_csv('./data/{}.csv'.format(stock_name))
dates = df['Date']
num_holding = agent.initial_portfolio_value // df.iloc[0, 4]
balance_left = agent.initial_portfolio_value % df.iloc[0, 4]
buy_and_hold_portfolio_values = df['Close']*num_holding + balance_left
buy_and_hold_return = buy_and_hold_portfolio_values.iloc[-1] - agent.initial_portfolio_value
return dates, buy_and_hold_portfolio_values, buy_and_hold_return
def plot_portfolio_performance_comparison(stock_name, agent):
dates, buy_and_hold_portfolio_values, buy_and_hold_return = buy_and_hold_benchmark(stock_name, agent)
agent_return = agent.portfolio_values[-1] - agent.initial_portfolio_value
plt.figure(figsize=(15, 5), dpi=100)
plt.title('{} vs. Buy and Hold'.format(agent.model_type))
plt.plot(dates, agent.portfolio_values, color='green', label='{} Total Return: ${:.2f}'.format(agent.model_type, agent_return))
plt.plot(dates, buy_and_hold_portfolio_values, color='blue', label='{} Buy and Hold Total Return: ${:.2f}'.format(stock_name, buy_and_hold_return))
# compare with S&P 500 performance in 2018
if '^GSPC' not in stock_name:
dates, GSPC_buy_and_hold_portfolio_values, GSPC_buy_and_hold_return = buy_and_hold_benchmark('^GSPC_2018', agent)
plt.plot(dates, GSPC_buy_and_hold_portfolio_values, color='red', label='S&P 500 2018 Buy and Hold Total Return: ${:.2f}'.format(GSPC_buy_and_hold_return))
plt.xticks(np.linspace(0, len(dates), 10))
plt.ylabel('Portfolio Value ($)')
plt.legend()
plt.grid()
plt.show()
def plot_all(stock_name, agent):
'''combined plots of plot_portfolio_transaction_history and plot_portfolio_performance_comparison'''
fig, ax = plt.subplots(2, 1, figsize=(16,8), dpi=100)
portfolio_return = agent.portfolio_values[-1] - agent.initial_portfolio_value
df = pd.read_csv('./data/{}.csv'.format(stock_name))
buy_prices = [df.iloc[t, 4] for t in agent.buy_dates]
sell_prices = [df.iloc[t, 4] for t in agent.sell_dates]
ax[0].set_title('{} Total Return on {}: ${:.2f}'.format(agent.model_type, stock_name, portfolio_return))
ax[0].plot(df['Date'], df['Close'], color='black', label=stock_name)
ax[0].scatter(agent.buy_dates, buy_prices, c='green', alpha=0.5, label='buy')
ax[0].scatter(agent.sell_dates, sell_prices,c='red', alpha=0.5, label='sell')
ax[0].set_ylabel('Price')
ax[0].set_xticks(np.linspace(0, len(df), 10))
ax[0].legend()
ax[0].grid()
dates, buy_and_hold_portfolio_values, buy_and_hold_return = buy_and_hold_benchmark(stock_name, agent)
agent_return = agent.portfolio_values[-1] - agent.initial_portfolio_value
ax[1].set_title('{} vs. Buy and Hold'.format(agent.model_type))
ax[1].plot(dates, agent.portfolio_values, color='green', label='{} Total Return: ${:.2f}'.format(agent.model_type, agent_return))
ax[1].plot(dates, buy_and_hold_portfolio_values, color='blue', label='{} Buy and Hold Total Return: ${:.2f}'.format(stock_name, buy_and_hold_return))
# compare with S&P 500 performance in 2018 if stock is not S&P 500
if '^GSPC' not in stock_name:
dates, GSPC_buy_and_hold_portfolio_values, GSPC_buy_and_hold_return = buy_and_hold_benchmark('^GSPC_2018', agent)
ax[1].plot(dates, GSPC_buy_and_hold_portfolio_values, color='red', label='S&P 500 2018 Buy and Hold Total Return: ${:.2f}'.format(GSPC_buy_and_hold_return))
ax[1].set_ylabel('Portfolio Value ($)')
ax[1].set_xticks(np.linspace(0, len(df), 10))
ax[1].legend()
ax[1].grid()
plt.subplots_adjust(hspace=0.5)
plt.show()
def plot_portfolio_returns_across_episodes(model_name, returns_across_episodes):
len_episodes = len(returns_across_episodes)
plt.figure(figsize=(15, 5), dpi=100)
plt.title('Portfolio Returns')
plt.plot(returns_across_episodes, color='black')
plt.xlabel('Episode')
plt.ylabel('Return Value')
plt.grid()
plt.savefig('visualizations/{}_returns_ep{}.png'.format(model_name, len_episodes))
plt.show()