-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspark_exercise_02.py
45 lines (24 loc) · 921 Bytes
/
spark_exercise_02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# In[18]:
# Exercise 02
# https://jaceklaskowski.github.io/spark-workshop/exercises/sql/selecting-the-most-important-rows-per-assigned-priority.html
from pyspark.sql import SparkSession
#Create SparkSession
spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
input = [(1, "MV1"),
(1, "MV2"),
(2, "VPV"),
(2, "Others")]
headers = ["id", "value"]
df_input = spark.createDataFrame(input).toDF(*headers)
df_input.show(truncate=False)
# In[19]:
from pyspark.sql import functions as F
from pyspark.sql import Window
df_input = df_input.withColumn('index', F.monotonically_increasing_id())
df_input.show(truncate=False)
# In[20]:
window = Window.partitionBy("id").orderBy(F.asc("id"), F.asc("index"))
df_input = df_input.withColumn("priority", F.row_number().over(window))
result = df_input.where(df_input.priority == 1)
result.select("id", "value").show(truncate=False)
# In[ ]: