-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
265 lines (219 loc) · 9.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import print_function
import os
import cv2
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
# from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
import datasets
from models import model_zoo
import transforms
from utils import lr_scheduler, files
from option import Options
from datasets.sampler import ImbalancedDatasetSampler
# global variable
best_pred = 0.0
acclist_train = []
acclist_val = []
# Writer will output to ./runs/ directory by default
# writer = SummaryWriter()
def main():
# init the args
global best_pred, acclist_train, acclist_val
args = Options().parse()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# init dataloader
transform_train, transform_val, _ = transforms.get_transform(args.dataset)
trainset = datasets.get_dataset(args.dataset,
root='/home/ace19/dl_data/materials/train',
transform=transform_train)
valset = datasets.get_dataset(args.dataset,
root='/home/ace19/dl_data/materials/validation',
transform=transform_val)
# balanced sampling between classes
train_loader = DataLoader(
trainset, batch_size=args.batch_size, num_workers=args.workers,
sampler=ImbalancedDatasetSampler(trainset))
# train_loader = DataLoader(
# trainset, batch_size=args.batch_size, shuffle=True,
# num_workers=args.workers, pin_memory=True)
val_loader = DataLoader(
valset, batch_size=args.test_batch_size, shuffle=False,
num_workers=args.workers)
# init the backbone model
if args.pretrained is not None:
model = model_zoo.get_model(args.model, backbone=args.backbone)
else:
model = model_zoo.get_model(args.model, backbone_pretrained=True, backbone=args.backbone)
print(model)
# criterion and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
# weight_decay=args.weight_decay)
if args.cuda:
model.cuda()
criterion.cuda()
# Please use CUDA_VISIBLE_DEVICES to control the number of gpus
model = nn.DataParallel(model)
# check point
if args.pretrained is not None:
if os.path.isfile(args.pretrained):
print("=> loading checkpoint '{}'".format(args.pretrained))
checkpoint = torch.load(args.pretrained)
args.start_epoch = checkpoint['epoch'] + 1
best_pred = checkpoint['best_pred']
acclist_train = checkpoint['acclist_train']
acclist_val = checkpoint['acclist_val']
model.module.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.pretrained, checkpoint['epoch']))
else:
raise RuntimeError("=> no pretrained checkpoint found at '{}'". \
format(args.pretrained))
scheduler = lr_scheduler.LR_Scheduler(args.lr_scheduler, args.lr, args.epochs,
len(train_loader), args.lr_step)
def train(epoch):
model.train()
losses = AverageMeter()
top1 = AverageMeter()
global best_pred, acclist_train, acclist_val
tbar = tqdm(train_loader, desc='\r')
for batch_idx, (_, images, targets) in enumerate(tbar):
scheduler(optimizer, batch_idx, epoch, best_pred)
# display_data(images)
# TODO: Convert from list of 3D to 4D
# images = np.stack(images, axis=1)
# images = torch.from_numpy(images)
if args.cuda:
images, targets = images.cuda(), targets.cuda()
# compute gradient and do SGD step
optimizer.zero_grad()
_, output = model(images)
loss = criterion(output, targets)
loss.backward()
optimizer.step()
acc1 = accuracy(output, targets)
top1.update(acc1[0], images.size(0))
losses.update(loss.item(), images.size(0))
tbar.set_description('\rLoss: %.3f | Top1: %.3f' % (losses.avg, top1.avg))
acclist_train += [top1.avg]
def validate(epoch):
model.eval()
top1 = AverageMeter()
top5 = AverageMeter()
confusion_matrix = torch.zeros(args.nclass, args.nclass)
global best_pred, acclist_train, acclist_val
is_best = False
tbar = tqdm(val_loader, desc='\r')
# TTA(TenCrop) input, target = batch # input is a 5d tensor, target is 2d
# bs, ncrops, c, h, w = input.size()
# result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
# result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
for batch_idx, (fnames, images, targets) in enumerate(tbar):
# Convert from list of 3D to 4D
# images = np.stack(images, axis=1)
# images = torch.from_numpy(images)
if args.cuda:
images, targets = images.cuda(), targets.cuda()
# images, targets = Variable(images), Variable(targets)
with torch.no_grad():
# _, output = model(images)
# TTA
batch_size, n_crops, c, h, w = images.size()
# fuse batch size and ncrops
_, output = model(images.view(-1, c, h, w))
# avg over crops
output = output.view(batch_size, n_crops, -1).mean(1)
# accuracy
acc1, acc5 = accuracy(output, targets, topk=(1, 1))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# confusion matrix
_, preds = torch.max(output, 1)
for t, p in zip(targets.view(-1), preds.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
tbar.set_description('Top1: %.3f | Top5: %.3f' % (top1.avg, top5.avg))
# end of for
print('\n----------------------------------')
print('confusion matrix:\n', confusion_matrix)
# get the per-class accuracy
print('\nper-class accuracy(precision):\n', confusion_matrix.diag() / confusion_matrix.sum(1))
print('----------------------------------\n')
if args.eval:
print('Top1 Acc: %.3f | Top5 Acc: %.3f ' % (top1.avg, top5.avg))
return
# save checkpoint
acclist_val += [top1.avg]
if top1.avg > best_pred:
best_pred = top1.avg
is_best = True
files.save_checkpoint({
'epoch': epoch,
'state_dict': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'best_pred': best_pred,
'acclist_train': acclist_train,
'acclist_val': acclist_val,
}, args=args, is_best=is_best)
if args.eval:
validate(args.start_epoch)
# writer.close()
return
for epoch in range(args.start_epoch, args.epochs + 1):
train(epoch)
validate(epoch)
# writer.close()
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
prob, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def display_data(image):
# display image to verify
image = image.numpy()
image = np.transpose(image, (0, 2, 3, 1))
# # assets not np.any(np.isnan(image))
n_batch = image.shape[0]
# n_view = train_batch_xs.shape[1]
for i in range(n_batch):
img = image[i]
# scipy.misc.toimage(img).show() Or
img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB)
cv2.imwrite('/home/ace19/Pictures/' + str(i) + '.png', img)
# cv2.imshow(str(train_batch_ys[idx]), img)
cv2.waitKey(100)
cv2.destroyAllWindows()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == "__main__":
main()