-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal-global-flatness.tex
129 lines (101 loc) · 3.52 KB
/
local-global-flatness.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
\documentclass{article}
% \usepackage{times}
\usepackage{mathptmx}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage{calc}
\usepackage{units}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{subdepth}
\usepackage{cite}
\usepackage{url}
\usepackage{notoccite}
\usepackage{nag}
\title{Local and Global Flatness}
\author{Adam Getchell}
\date{}
\begin{document}
\maketitle
Given the metric on a cone "induced from the plane":
\begin{equation}
\begin{array}{rcl} ds^{2}=dr^{2}+r^{2}d\theta^{2} & \mbox{with} & \begin{array}{cc}0\leqslant r\leqslant\infty, & \beta\leqslant\theta < 2\pi
\end{array}
\end{array}
\end{equation}
Using the Christoffel connections:
\begin{equation}
\Gamma_{\mu\nu}^{\lambda}=\frac{1}{2}g^{\lambda\sigma}\left(\partial_{\mu}g_{\nu\sigma}+\partial_{\nu}g_{\sigma\mu}-\partial_{\sigma}g_{\mu\nu}\right)
\end{equation}
We find:
\begin{equation}
\begin{array}{l}
\Gamma^{r}_{\theta\theta}=-r\\
\Gamma^{\theta}_{r\theta}=\Gamma^{\theta}_{\theta r}=\frac{1}{r}\\
\end{array}
\end{equation}
To parallel transport around the curve from $\theta=\beta$ to $\theta=2\pi$ we set the directional covariant derivative equal to zero along the curve:
\begin{equation}
\begin{array}{rcl} \frac{D}{d\lambda}=\frac{dx^{\mu}}{d\lambda}\nabla_{\mu}=0 & \mbox{along} & x^{\mu}\left(\lambda\right)
\end{array}
\end{equation}
Since we are parallel transporting a vector, this reduces to:
\begin{equation}
\nabla_{\alpha}V^{\beta}=0
\end{equation}
We are going around the $\theta$ axis at $r=r_{0}$, so we have:
\begin{equation}
\begin{array}{l}
\partial_{\theta}V^{r}+\Gamma^{r}_{\theta\theta}V^{\theta}=0 \\
\partial_{\theta}V^{\theta}+\Gamma^{\theta}_{\theta r}V^{r}=0
\end{array}
\end{equation}
Plugging in our connections we have:
\begin{equation}
\partial_{\theta}V^{r}-rV^{\theta}=0 \label{eq:v-theta}
\end{equation}
\begin{equation}
\partial_{\theta}V^{\theta}+\frac{1}{r}V^{r}=0 \label{eq:v-r}
\end{equation}
Differentiating Equation (\ref{eq:v-theta}) with respect to $\theta$ we get:
\begin{equation}
\partial_{\theta}V^{\theta}=\frac{1}{r}\partial^{2}_{\theta}V^{r} \label{eq:d-theta-v-theta}
\end{equation}
We can plug Equation (\ref{eq:d-theta-v-theta}) into Equation (\ref{eq:v-r}) to get:
\begin{equation}
\partial^{2}_{\theta}V^{r}+V^{r}=0
\end{equation}
For which the solution is:
\begin{equation}
V^{r}=A\cos(\theta)+B\sin(\theta)
\end{equation}
Likewise,
\begin{equation}
V^{\theta}=\frac{1}{r}\left(-A\cos(\theta)+B\sin(\theta)\right)
\end{equation}
Now, at $\theta=\beta$ then $V=0\hat{e_{r}}+1\hat{e_{\theta}}$ so we have:
\begin{equation}
V^{r}=0=A\cos(\beta)+B\sin(\beta)\rightarrow A=-B\tan(\beta)
\end{equation}
\begin{equation}
V^{\theta}=\frac{1}{r_{0}}\left(-A\cos(\beta)+B\sin(\beta)\right)\rightarrow B=\frac{r_{0}}{\tan(\beta)\sin(\beta)+\cos(\beta)}
\end{equation}
Which gives us (after simplifying trigonometry):
\begin{equation}
\begin{array}{l}
A=-r_{0}\sin(\beta) \\
B=r_{0}\cos(\beta)
\end{array}
\end{equation}
And the expression for $V^{\theta}$ is:
\begin{equation}
V^{\theta}=\left(\sin(\theta)\sin(\beta)+\cos(\theta)\cos(\beta)\right)\hat{e}_{\theta}
\end{equation}
Which gives, finally, that:
\begin{equation}
V^{\theta}\left(\theta=2\pi\right)=\cos(\beta)\hat{e}_{\theta}
\end{equation}
As the first sanity check, we note that if $\beta=0$ then $V^{\theta}=\hat{e}_{\theta}$ as expected.
For the second sanity check, we note that $V_{\theta}V^{\theta}=1$ for any value of $\beta$ or $\theta$, that is, the length of the vector after being parallel transported is unchanged.
\end{document}