-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmap_test.py
executable file
·649 lines (533 loc) · 25.2 KB
/
map_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#!/usr/bin/env python3
#####!/usr/local/bin/python3
import logging
import click
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql import functions as F
import predictionio
import pandas as pd
import numpy as np
import ml_metrics as metrics
from tqdm import tqdm
from report import CSVReport, ExcelReport
from config import init_config
from uuid import uuid4
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
#logging = logging.getlogging(__name__)
#logging.setLevel(level=logging.DEBUG)
cfg = init_config('config.json')
logging.debug("Application was launched with config: %s" % str(cfg.init_dict))
def get_split_date(df, split_event, train_ratio=0.8):
"""Calculates split date
Calculates the moment of time that we will use to split
data into the train (befor the moment) and the test sets
Args:
df: Spark DataFrame
train_ratio: ratio of samples in train set
Returns:
A datetime object
"""
date_rdd = (df
.filter("event = '%s'" % split_event)
.select("Date")
.sort("Date", ascending=True)
.rdd)
total_primary_events = date_rdd.count()
split_date = (date_rdd
.zipWithIndex()
.filter(lambda x: x[1] > total_primary_events * train_ratio)
.first()[0][0])
return split_date
def split_data(df):
if cfg.splitting.type == "random":
return df.randomSplit([cfg.splitting.train_ratio, 1 - cfg.splitting.train_ratio], seed=cfg.splitting.random_seed)
elif cfg.splitting.type == "date":
split_date = get_split_date(df, cfg.splitting.split_event, cfg.splitting.train_ratio)
return df.filter(F.col("Date") < split_date), df.filter(F.col("Date") >= split_date)
def mk_intersection_matrix(by_rows, columns_for_matrix,
horizontal_suffix="", vertical_suffix=""):
""" Makes pandas dataframe of intersections out of list of rows
"""
result = pd.DataFrame(columns=[col + horizontal_suffix for col in columns_for_matrix])
for en in columns_for_matrix:
result.loc[en + vertical_suffix, :] = [0] * len(columns_for_matrix)
for r in by_rows:
row = r.asDict()
en_h = row['event_left']
en_v = row['event_right']
count = row['count']
result.loc[en_v + vertical_suffix, en_h + horizontal_suffix] = count
return result
@click.command()
@click.option('--intersections', is_flag=True)
@click.option('--csv_report', is_flag=True)
def split(intersections, csv_report):
logging.info('Splitting started')
if csv_report:
if cfg.reporting.use_uuid:
uuid = uuid4()
reporter = CSVReport(cfg.reporting.csv_dir, uuid)
else:
reporter = CSVReport(cfg.reporting.csv_dir, None)
else:
reporter = ExcelReport(cfg.reporting.file)
logging.info('Spark initialization')
sc = SparkContext(cfg.spark.master, 'map_test: split')
sqlContext = SQLContext(sc)
logging.info('Source file reading')
df = sqlContext.read.json(cfg.splitting.source_file)
df = df.withColumn("Date", F.from_utc_timestamp("eventTime", "UTC"))
users_with_event_count = df.groupBy(F.col("entityId").alias("user")).count()
logging.info('Filter users with small number of events')
min_events = 10
users_with_few_events = (users_with_event_count
.filter("count < %d" % (min_events))
.select(F.col("user").alias("user_with_few_events")))
ndf = df.join(users_with_few_events,
F.col("entityId")==F.col("user_with_few_events"),
how="left_outer")
df1 = ndf.filter("user_with_few_events is NULL").drop("user_with_few_events")
logging.info('Split data into train and test')
train_df, test_df = split_data(df)
train_df.write.json(cfg.splitting.train_file, mode="overwrite")
test_df.write.json(cfg.splitting.test_file, mode="overwrite")
train_df = train_df.select("entityId", "event", "targetEntityId").cache()
test_df = test_df.select("entityId", "event", "targetEntityId").cache()
logging.info('Calculation of different stat metrics of datasets')
events_by_type = (df
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("count_total"))
.toPandas())
events_by_type_test = (test_df
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("count_test"))
.toPandas()
.set_index("event"))
events_by_type_train = (train_df
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("count_train"))
.toPandas()
.set_index("event"))
unique_users_by_event = (df
.select(F.col("entityId"), F.col("event"))
.distinct()
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("unique_users_total"))
.toPandas()
.set_index("event"))
unique_users_by_event_train = (train_df
.select(F.col("entityId"), F.col("event"))
.distinct()
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("unique_users_train"))
.toPandas()
.set_index("event"))
unique_users_by_event_test = (test_df
.select(F.col("entityId"), F.col("event"))
.distinct()
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("unique_users_test"))
.toPandas()
.set_index("event"))
unique_items_by_event = (df
.select(F.col("targetEntityId"), F.col("event"))
.distinct()
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("unique_items_total"))
.toPandas()
.set_index("event"))
unique_items_by_event_train = (train_df
.select(F.col("targetEntityId"), F.col("event"))
.distinct()
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("unique_items_train"))
.toPandas()
.set_index("event"))
unique_items_by_event_test = (test_df
.select(F.col("targetEntityId"), F.col("event"))
.distinct()
.groupBy("event")
.count()
.select(F.col("event"), F.col("count").alias("unique_items_test"))
.toPandas()
.set_index("event"))
logging.info('Calculate total counts')
events = df.count()
events_train = train_df.count()
events_test = test_df.count()
unique_users = df.select("entityId").distinct().count()
unique_users_train = train_df.select("entityId").distinct().count()
unique_users_test = test_df.select("entityId").distinct().count()
unique_items = df.select(F.col("targetEntityId")).distinct().count()
unique_items_train = train_df.select(F.col("targetEntityId")).distinct().count()
unique_items_test = test_df.select(F.col("targetEntityId")).distinct().count()
info_df = events_by_type
dfs = [unique_users_by_event, unique_items_by_event,
events_by_type_train, events_by_type_test,
unique_users_by_event_train, unique_users_by_event_test,
unique_items_by_event_train, unique_items_by_event_test]
for data_frame in dfs:
info_df = info_df.join(data_frame, on="event")
n_rows, n_cols = info_df.shape
# totals
info_df.loc[n_rows] = ['ANY EVENT', events, unique_users, unique_items,
events_train, events_test,
unique_users_train, unique_users_test,
unique_items_train, unique_items_test]
info_df.insert(4, 'events per user', info_df.ix[:, 1] / info_df.ix[:, 2])
info_df.insert(5, 'events per item', info_df.ix[:, 1] / info_df.ix[:, 3])
logging.info('Create event stat worksheet')
reporter.start_new_sheet('Events stat')
reporter.report(
['event', 'event count', 'unique users', 'unique items',
'events per user', 'events per item',
'event count train', 'event count test',
'unique users train', 'unique users test',
'unique items train', 'unique items test'],
[column.tolist() for _, column in info_df.iteritems()],
selected_rows=[next(info_df.iteritems())[1].tolist().index(cfg.testing.primary_event)],
cfg=cfg)
reporter.finish_sheet()
if intersections:
logging.info('Start intersections calculation')
reporter.start_new_sheet('Intersections')
columns_for_matrix = cfg.testing.events
logging.info('Process train / train user intersection')
train_train_users = (
train_df
.select(F.col("entityId").alias("user"), F.col("event").alias("event_left"))
.distinct()
.join(train_df.select(F.col("entityId").alias("user"), F.col("event").alias("event_right")).distinct(),
on="user", how="inner")
.groupBy(["event_left", "event_right"])
.count()
.collect())
trtru = mk_intersection_matrix(train_train_users, columns_for_matrix)
reporter.report(
[''] + list(trtru.columns.values),
[trtru.index.tolist()] + [column for _, column in trtru.iteritems()],
title='Train / train user intersection')
logging.info('Process train / test user intersection')
train_test_users = (
train_df
.select(F.col("entityId").alias("user"), F.col("event").alias("event_left"))
.distinct()
.join(test_df.select(F.col("entityId").alias("user"), F.col("event").alias("event_right")).distinct(),
on="user", how="inner")
.groupBy(["event_left", "event_right"])
.count()
.collect())
trtsu = mk_intersection_matrix(train_test_users, columns_for_matrix,
horizontal_suffix=" train", vertical_suffix=" test")
reporter.report(
[''] + list(trtsu.columns.values),
[trtsu.index.tolist()] + [column for _, column in trtsu.iteritems()],
title='Train / test user intersection')
logging.info('Process train / train item intersection')
train_train_items = (
train_df
.select(F.col("targetEntityId").alias("item"), F.col("event").alias("event_left"))
.distinct()
.join(train_df.select(F.col("targetEntityId").alias("item"), F.col("event").alias("event_right")).distinct(),
on="item", how="inner")
.groupBy(["event_left", "event_right"])
.count()
.collect())
trtri = mk_intersection_matrix(train_train_items, columns_for_matrix)
reporter.report(
[''] + list(trtri.columns.values),
[trtri.index.tolist()] + [column for _, column in trtri.iteritems()],
title='Train / train item intersection'
)
logging.info('Process train / test item intersection')
train_test_items = (
train_df
.select(F.col("targetEntityId").alias("item"), F.col("event").alias("event_left"))
.distinct()
.join(test_df.select(F.col("targetEntityId").alias("item"), F.col("event").alias("event_right")).distinct(),
on="item", how="inner")
.groupBy(["event_left", "event_right"])
.count()
.collect())
trtsi = mk_intersection_matrix(train_test_items, columns_for_matrix,
horizontal_suffix=" train", vertical_suffix=" test")
reporter.report(
[''] + list(trtsi.columns.values),
[trtsi.index.tolist()] + [column for _, column in trtsi.iteritems()],
title='Train / test item intersection'
)
reporter.report_config(cfg)
reporter.finish_document()
logging.info('Splitting finished successfully')
def run_map_test_dummy(data, items=None, probs=None, uniform=True, top=True,
users=None, primaryEvent=cfg.testing.primary_event, K=10, no_progress=False):
"""Performs dummy test
Args:
data: list of event rows
items: np.array or list of items sorted in descending popularity order
probs: np.array or list of corresponding probabilities (needed for experiment #2)
uniform: Boolean flag to use uniform sampling
top: Boolean flag to use top items
users: set of users to consider
primaryEvent: str name of primary event
K: int for MAP @ K
no_progress: Boolean flag not to show the progress bar during calculations
Returns:
list of [MAP@1, MAP@2, ... MAP@K] evaluations
"""
d = {}
for rec in data:
if rec.event == primaryEvent:
user = rec.entityId
item = rec.targetEntityId
if not users or user in users:
d.setdefault(user, []).append(item)
holdoutUsers = [*d.keys()]
prediction = []
ground_truth = []
if no_progress:
gen = holdoutUsers
else:
gen = tqdm(holdoutUsers)
for user in gen:
if top:
test_items = items[0:K]
elif uniform:
test_items = np.random.choice(items, size=(K,))
else:
test_items = np.random.choice(items, size=(K,), p=probs)
prediction.append(test_items)
ground_truth.append(d.get(user, []))
return [metrics.mapk(ground_truth, prediction, k) for k in range(1, K + 1)]
def run_map_test(data, eventNames, users=None, primaryEvent=cfg.testing.primary_event,
consider_non_zero_scores=cfg.testing.consider_non_zero_scores_only,
num=200, K=cfg.testing.map_k, test=False, predictionio_url="http://0.0.0.0:8000"):
N_TEST = 2000
d = {}
res_data = {}
engine_client = predictionio.EngineClient(url=predictionio_url)
for rec in data:
if rec.event == primaryEvent:
user = rec.entityId
item = rec.targetEntityId
if not users or user in users:
d.setdefault(user, []).append(item)
if test:
holdoutUsers = [*d.keys()][1:N_TEST]
else:
holdoutUsers = [*d.keys()]
prediction = []
ground_truth = []
user_items_cnt = 0.0
users_cnt = 0
for user in tqdm(holdoutUsers):
q = {
"user": user,
"eventNames": eventNames,
"num": num,
}
try:
res = engine_client.send_query(q)
# Sort by score then by item name
tuples = sorted([(r["score"], r["item"]) for r in res["itemScores"]], reverse=True)
scores = [score for score, item in tuples]
items = [item for score, item in tuples]
res_data[user] = {
"items": items,
"scores": scores,
}
# Consider only non-zero scores
if consider_non_zero_scores:
if len(scores) > 0 and scores[0] != 0.0:
prediction.append(items)
ground_truth.append(d.get(user, []))
user_items_cnt += len(d.get(user, []))
users_cnt += 1
else:
prediction.append(items)
ground_truth.append(d.get(user, []))
user_items_cnt += len(d.get(user, []))
users_cnt += 1
except predictionio.NotFoundError:
print("Error with user: %s" % user)
return ([metrics.mapk(ground_truth, prediction, k) for k in range(1, K + 1)],
res_data, user_items_cnt / (users_cnt + 0.00001))
def get_nonzero(r_data):
users = [user for user, res_data in r_data.items() if res_data['scores'][0] != 0.0]
return users
@click.command()
@click.option('--csv_report', is_flag=True)
@click.option('--all', is_flag=True)
@click.option('--dummy_test', is_flag=True)
@click.option('--separate_test', is_flag=True)
@click.option('--all_but_test', is_flag=True)
@click.option('--primary_pairs_test', is_flag=True)
@click.option('--custom_combos_test', is_flag=True)
@click.option('--non_zero_users_from_file', is_flag=True)
def test(csv_report,
all,
dummy_test,
separate_test,
all_but_test,
primary_pairs_test,
custom_combos_test,
non_zero_users_from_file):
logging.info('Testing started')
if csv_report:
if cfg.reporting.use_uuid:
uuid = uuid4()
reporter = CSVReport(cfg.reporting.csv_dir, uuid)
else:
reporter = CSVReport(cfg.reporting.csv_dir, None)
else:
reporter = ExcelReport(cfg.reporting.file)
logging.info('Spark context initialization')
sc = SparkContext(cfg.spark.master, 'map_test: test')
sqlContext = SQLContext(sc)
logging.info('Test data reading')
test_df = sqlContext.read.json(cfg.splitting.test_file).select("entityId", "event", "targetEntityId").cache()
test_data = test_df.filter("event = '%s'" % (cfg.testing.primary_event)).collect()
#non_zero_users = set([r[0] for r in test_data][500:650]) # Because actually all our users have 0.0 scores -- too few data
if all or dummy_test:
logging.info('Train data reading')
train_df = sqlContext.read.json(cfg.splitting.train_file).select("entityId", "event", "targetEntityId").cache()
counts = train_df.filter("event = '%s'" % (cfg.testing.primary_event)).groupBy("targetEntityId").count().collect()
sorted_rating = sorted([(row.asDict()['count'], row.asDict()['targetEntityId']) for row in counts], reverse=True)
elements = np.array([item for cnt, item in sorted_rating])
probs = np.array([cnt for cnt, item in sorted_rating])
probs = 1.0 * probs / probs.sum()
logging.info('Process dummy test')
# case 1. Random sampling from items (uniform)
dummy_uniform_res = run_map_test_dummy(test_data, items=elements, probs=probs,
uniform=True, top=False, K=cfg.testing.map_k)
# case 2. Random sampling from items (according to their distribution in training data)
dummy_res = run_map_test_dummy(test_data, items=elements, probs=probs,
uniform=False, top=False, K=cfg.testing.map_k)
# case 3. Top-N items from training data
dummy_top_res = run_map_test_dummy(test_data, items=elements, probs=probs,
uniform=True, top=True, K=cfg.testing.map_k)
reporter.start_new_sheet('Dummy MAP benchmark')
reporter.report(
['', 'Random uniform', 'Random sampled from train', 'Top - N'],
[[('MAP @ %d' % i) for i in range(1, len(dummy_res)+1)]] + [dummy_uniform_res, dummy_res, dummy_top_res],
cfg=cfg
)
reporter.finish_sheet()
logging.info('Process top 20 dummy test')
scores = []
for i in range(20):
scores.append(run_map_test_dummy(test_data, items=elements[i:], uniform=True,
top=True, K=1, no_progress=True)[0])
reporter.start_new_sheet('Top-20 perfomance')
reporter.report(
['Rank', 'MAP@1'],
[list(range(1, 21)), scores],
bold_first_column=False,
cfg=cfg
)
reporter.finish_sheet()
if all or separate_test or all_but_test or primary_pairs_test or custom_combos_test:
logging.info('Non zero users')
if non_zero_users_from_file:
with open(cfg.testing.non_zero_users_file) as input:
non_zero_users = set(input.read().split(','))
else:
_, r_data, _ = run_map_test(test_data, [cfg.testing.primary_event], test=False)
non_zero_users = get_nonzero(r_data)
with open(cfg.testing.non_zero_users_file, 'w') as output:
output.write(','.join(non_zero_users))
if all or separate_test:
logging.info('Process "map separate events" test')
columns = []
for ev in cfg.testing.events:
(r_scores, r_data, ipu) = run_map_test(test_data, [ev], users=non_zero_users, test=False)
columns.append(r_scores + [len(non_zero_users)])
first_column = [('MAP @ %d' % i) for i in range(1, len(columns[0]))] + ['non-zero users']
reporter.start_new_sheet('MAP separate events')
reporter.report(
['event'] + cfg.testing.events,
[first_column] + columns,
selected_columns=[cfg.testing.events.index(cfg.testing.primary_event) + 1],
cfg=cfg
)
reporter.finish_sheet()
if all or all_but_test:
logging.info('Process "map all but..." test')
events_scores = []
for ev in cfg.testing.events:
evs = list(cfg.testing.events)
evs.remove(ev)
(r_scores, r_data, ipu) = run_map_test(test_data, evs, users=non_zero_users, test=False)
events_scores.append(r_scores + [len(non_zero_users)])
evl = cfg.testing.events
all_scores, r_data, ipu = run_map_test(test_data, evl, users=non_zero_users, test=False)
all_scores.append(len(non_zero_users))
first_column = [('MAP @ %d' % i) for i in range(1, len(all_scores))] + ['non-zero users']
reporter.start_new_sheet('MAP all but...')
reporter.report(
['event'] + cfg.testing.events + ['All'],
[first_column] + events_scores + [all_scores],
selected_columns=[cfg.testing.events.index(cfg.testing.primary_event) + 1],
cfg=cfg
)
reporter.finish_sheet()
if all or primary_pairs_test:
logging.info('Process "map pairs with primary" test')
columns = []
events_without_primary = [event for event in cfg.testing.events if event != cfg.testing.primary_event]
for event in events_without_primary:
(r_scores, r_data, ipu) = run_map_test(test_data, [cfg.testing.primary_event, event],
users=non_zero_users, test=False)
columns.append(r_scores + [len(non_zero_users)])
first_column = [('MAP @ %d' % i) for i in range(1, len(columns[0]))] + ['non-zero users']
reporter.start_new_sheet('MAP pairs with primary')
reporter.report(
['event'] + events_without_primary,
[first_column] + columns,
cfg=cfg
)
reporter.finish_sheet()
if all or custom_combos_test:
logging.info('Process "custom combos" test')
columns = []
for event_group in cfg.testing.custom_combos.event_groups:
if len(event_group) == 2 and cfg.testing.primary_event in event_group and primary_pairs_test:
logging.warn("Report for group %s already generated in 'MAP pairs with primary'" % str(event_group))
continue
if len(event_group) == 1 and separate_test:
logging.warn("Report for group %s already generated in 'MAP separate events'" % str(event_group))
continue
if len(event_group) >= len(cfg.testing.events) - 1 and all_but_test:
logging.warn("Report for group %s already generated in 'All but...'" % str(event_group))
continue
(r_scores, r_data, ipu) = run_map_test(test_data, event_group,
users=non_zero_users, test=False)
columns.append(r_scores + [len(non_zero_users)])
first_column = [('MAP @ %d' % i) for i in range(1, len(columns[0]))] + ['non-zero users']
reporter.start_new_sheet('Custom combos')
reporter.report(
['event'] + [str([s.encode('utf-8') for s in group]) for group in cfg.testing.custom_combos.event_groups],
[first_column] + columns,
cfg=cfg
)
reporter.finish_sheet()
reporter.finish_document()
logging.info('Testing finished successfully')
# root group
@click.group()
def root():
pass
root.add_command(split)
root.add_command(test)
if __name__ == "__main__":
root()