-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_domino.py
385 lines (323 loc) · 15.7 KB
/
main_domino.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
from typing import Tuple, Any, Callable
import functools
import os
import time
import pickle
import jax
import jax.numpy as jnp
from flax import serialization
from brax.envs import State as EnvState
from baselines.qdax.baselines.domino import DOMINOConfig, DOMINO, DOMINOTrainingState, DOMINOTransition
from baselines.qdax.core.neuroevolution.mdp_utils import TrainingState
from baselines.qdax.environments import create
from baselines.qdax.core.neuroevolution.buffers.buffer import ReplayBuffer, Transition
from baselines.qdax.core.neuroevolution.sac_td3_utils import warmstart_buffer
from baselines.qdax.core.containers.mapelites_repertoire import compute_cvt_centroids
from baselines.qdax.core.containers.mapelites_repertoire import MapElitesRepertoire
from baselines.qdax.types import Metrics
from baselines.qdax.utils.metrics import CSVLogger, default_qd_metrics
import hydra
from hydra.core.config_store import ConfigStore
from omegaconf import OmegaConf
import wandb
from utils.env_utils import Config
@functools.partial(
jax.jit,
static_argnames=(
"env_batch_size",
"grad_updates_per_step",
"play_step_fn",
"update_fn",
),
)
def domino_do_iteration_fn(
training_state_tree: TrainingState,
env_state_tree: EnvState,
replay_buffer_tree: ReplayBuffer,
env_batch_size: int,
grad_updates_per_step: float,
play_step_fn: Callable[
[EnvState, TrainingState],
Tuple[
EnvState,
TrainingState,
Transition,
],
],
update_fn: Callable[
[TrainingState, ReplayBuffer],
Tuple[
TrainingState,
ReplayBuffer,
Metrics,
],
],
) -> Tuple[TrainingState, EnvState, ReplayBuffer, Metrics]:
"""Performs one environment step (over all env simultaneously) followed by one
training step. The number of updates is controlled by the parameter
`grad_updates_per_step` (0 means no update while 1 means `env_batch_size`
updates). Returns the updated states, the updated buffer and the aggregated
metrics.
"""
def _scan_update_fn(
carry: Tuple[TrainingState, ReplayBuffer], unused_arg: Any
) -> Tuple[Tuple[TrainingState, ReplayBuffer], Metrics]:
training_state, replay_buffer, metrics = update_fn(*carry)
return (training_state, replay_buffer), metrics
# play steps in the environment
env_state_tree, training_state_tree, transitions_tree = jax.vmap(play_step_fn)(env_state_tree, training_state_tree) # TODO: how to deal with the skill?
# insert transitions in replay buffer
replay_buffer_tree = jax.vmap(ReplayBuffer.insert)(replay_buffer_tree, transitions_tree)
num_updates = 1 # TODO: one update per step?
(training_state_tree, replay_buffer_tree), metrics = jax.lax.scan(
_scan_update_fn,
(training_state_tree, replay_buffer_tree),
(),
length=num_updates,
)
return training_state_tree, env_state_tree, replay_buffer_tree, metrics
@hydra.main(version_base="1.2", config_path="configs/", config_name="domino")
def main(config: Config) -> None:
wandb.init(
config=OmegaConf.to_container(config, resolve=True),
project="QDAC",
name=config.algo.name,
)
os.mkdir("./repertoire/")
os.mkdir("./actor/")
# Init a random key
random_key = jax.random.PRNGKey(config.seed)
# Init environment
# batch_size_eval = config.algo.num_skills
env = create(config.task + "_" + config.feat, batch_size=config.algo.env_batch_size, episode_length=config.algo.episode_length, backend=config.algo.backend)
env_eval = create(config.task + "_" + config.feat, batch_size=config.algo.env_batch_size, episode_length=config.algo.episode_length, backend=config.algo.backend, eval_metrics=True)
# Init replay buffer
dummy_transition = DOMINOTransition.init_dummy(
observation_dim=env.observation_size,
action_dim=env.action_size,
descriptor_dim=env.behavior_descriptor_length,
num_skills=config.algo.num_skills,
)
list_replay_buffers = []
for _ in range(config.algo.num_skills):
one_replay_buffer = ReplayBuffer.init(
buffer_size=config.algo.replay_buffer_size, transition=dummy_transition
)
list_replay_buffers.append(one_replay_buffer)
replay_buffer_tree = jax.tree_map(lambda *x: jnp.stack(x, axis=0), *list_replay_buffers)
# Define config
domino_config = DOMINOConfig(
# SAC config
batch_size=config.algo.batch_size,
episode_length=config.algo.episode_length,
tau=config.algo.soft_tau_update,
normalize_observations=config.algo.normalize_observations,
learning_rate=config.algo.learning_rate,
alpha_init=config.algo.alpha_init,
discount=config.algo.discount,
reward_scaling=config.algo.reward_scaling,
hidden_layer_sizes=config.algo.hidden_layer_sizes,
fix_alpha=config.algo.fix_alpha,
# DOMINO config
skill_type="categorical",
num_skills=config.algo.num_skills,
descriptor_full_state=False,
# Those values are taken from the DOMINO paper for DMControl environments
optimality_ratio=config.algo.optimality_ratio, # TO change!
alpha_d_v_avg=config.algo.alpha_d_v_avg,
alpha_d_sfs_avg=config.algo.alpha_d_sfs_avg,
learning_rate_lagrange=config.algo.learning_rate_lagrange,
)
# Define an instance of DOMINO
domino = DOMINO(config=domino_config, action_size=env.action_size)
# Init env state
random_key, random_subkey = jax.random.split(random_key)
random_key_tree = jax.random.split(random_subkey, config.algo.num_skills)
env_state_tree = jax.vmap(env.reset)(random_key_tree)
# Init skills
# env_state.info["skills"] = jax.vmap(domino._sample_z_from_prior)(random_keys) # TODO
if config.algo.descriptor_full_state:
descriptor_size = env.observation_size
else:
descriptor_size = env.behavior_descriptor_length
# Init training state
list_training_states = []
for _ in range(config.algo.num_skills):
random_key, random_subkey = jax.random.split(random_key)
one_training_state = domino.init(
random_subkey,
action_size=env.action_size,
observation_size=env.observation_size,
descriptor_size=descriptor_size,
)
list_training_states.append(one_training_state)
training_state_tree = jax.tree_map(lambda *x: jnp.stack(x, axis=0), *list_training_states)
# training_state = domino.init(
# random_subkey,
# action_size=env.action_size,
# observation_size=env.observation_size,
# descriptor_size=descriptor_size,
# )
# Make play_step functions scannable by passing static args beforehand
play_step = functools.partial(
domino.play_step_fn,
env=env,
deterministic=False,
)
eval_skills = jnp.eye(config.algo.num_skills) # TODO
play_eval_step = functools.partial(
domino.play_step_fn,
env=env_eval,
deterministic=True,
)
eval_policy = functools.partial(
domino.eval_policy_fn,
env=env_eval,
play_step_fn=play_eval_step,
)
# Warmstart the buffer
warmstart_buffer_fn = functools.partial(
warmstart_buffer,
num_warmstart_steps=config.algo.warmup_steps,
env_batch_size=config.algo.env_batch_size,
play_step_fn=play_step,
)
replay_buffer_tree, _, training_state_tree = jax.vmap(warmstart_buffer_fn)(replay_buffer_tree, training_state_tree, env_state_tree)
# Fix static arguments - prepare for scan
do_iteration = functools.partial(
domino_do_iteration_fn,
env_batch_size=config.algo.env_batch_size,
grad_updates_per_step=config.algo.grad_updates_per_step,
play_step_fn=play_step,
update_fn=domino.update,
)
# Create passive archive
centroids, random_key = compute_cvt_centroids(
num_descriptors=env.behavior_descriptor_length,
num_init_cvt_samples=config.algo.num_init_cvt_samples,
num_centroids=config.algo.num_centroids,
minval=env.behavior_descriptor_limits[0][0],
maxval=env.behavior_descriptor_limits[1][0],
random_key=random_key,
)
# Select first policy using tree_map
policy_params_dummy = jax.tree_map(lambda x: x[0], training_state_tree.policy_params)
repertoire = MapElitesRepertoire.init_default(genotype=policy_params_dummy, centroids=centroids)
# Get minimum reward value to make sure qd_score are positive
reward_offset = 0
# Define a metrics function
metrics_function = functools.partial(
default_qd_metrics,
qd_offset=reward_offset * env.episode_length,
)
# Define a function that enables do_iteration to be scanned
@jax.jit
def _scan_do_iteration(
carry: Tuple[DOMINOTrainingState, EnvState, ReplayBuffer, MapElitesRepertoire],
_,
) -> Tuple[Tuple[DOMINOTrainingState, EnvState, ReplayBuffer, MapElitesRepertoire], Any]:
_training_state, _env_state, _replay_buffer, _repertoire = carry
# Train
(
_training_state,
_env_state,
_replay_buffer,
_metrics,
) = do_iteration(_training_state, _env_state, _replay_buffer)
_metrics = jax.tree_util.tree_map(lambda current_metric: jnp.mean(current_metric), _metrics)
return (_training_state, _env_state, _replay_buffer, _repertoire,), _metrics
list_keys_metrics = ["iteration", "qd_score", "coverage", "max_fitness", "mean_fitness", "return", "return_diversity", "actor_loss", "critic_loss", "critic_norm_gradient", "lagrange_loss", "alpha_loss", "time"]
list_keys_metrics.extend(["return_no_diversity_{}".format(index_fitness) for index_fitness in range(config.algo.num_skills)])
list_keys_metrics.extend(["return_diversity_{}".format(index_fitness) for index_fitness in range(config.algo.num_skills)])
list_keys_metrics.extend(["min_avg_sfs_dists_{}".format(index_fitness) for index_fitness in range(config.algo.num_skills)])
list_keys_metrics.extend(["lagrange_param_{}".format(index_fitness) for index_fitness in range(config.algo.num_skills)])
list_keys_metrics.extend(["avg_reward_{}".format(index_fitness) for index_fitness in range(config.algo.num_skills)])
list_keys_metrics.extend(["min_desc_dists_{}".format(index_fitness) for index_fitness in range(config.algo.num_skills)])
metrics = dict.fromkeys(list_keys_metrics, jnp.array([]))
csv_logger = CSVLogger(
"./log.csv",
header=list(metrics.keys())
)
# Main loop
num_loops = int(config.algo.num_iterations / config.algo.log_period)
for i in range(num_loops):
start_time = time.time()
(training_state_tree, env_state_tree, replay_buffer_tree, repertoire), current_metrics = jax.lax.scan(
_scan_do_iteration,
(training_state_tree, env_state_tree, replay_buffer_tree, repertoire,),
(),
length=config.algo.log_period,
)
timelapse = time.time() - start_time
# Eval
all_skills = jnp.eye(config.algo.num_skills)
(
_,
true_returns,
diversity_returns,
state_desc,
) = jax.vmap(eval_policy, in_axes=(0, 0, None))(training_state_tree, all_skills, training_state_tree.avg_sfs)
descriptors = jnp.nanmean(state_desc, axis=1) # In this project, the descriptors are the mean of the state descriptors
descriptors = jnp.mean(descriptors, axis=1) # average over batch descriptors obtained by each policy
true_returns = jnp.mean(true_returns, axis=1) # average over batch descriptors obtained by each policy
repertoire = repertoire.add(
training_state_tree.policy_params,
descriptors,
true_returns,)
metrics_repertoire = metrics_function(repertoire)
metrics_repertoire["return"] = jnp.mean(true_returns)
metrics_repertoire["return_diversity"] = jnp.mean(diversity_returns)
# metrics_repertoire["mean_desc_dists"] = jnp.mean(mean_desc_dists)
def dist(x, y):
return jnp.sqrt(jnp.sum((x - y) ** 2))
v_dist = jax.vmap(dist, in_axes=(0, None))
vv_dist = jax.vmap(v_dist, in_axes=(None, 0))
def min_dist(X):
dist_matrix = vv_dist(X, X)
dist_matrix = dist_matrix.at[jnp.eye(X.shape[0]).astype(jnp.bool_)].set(jnp.inf)
return jnp.min(dist_matrix, axis=-1)
min_avg_sfs_dists = min_dist(training_state_tree.avg_sfs)
min_desc_dists = min_dist(descriptors)
for index_fitness, (fitness, fitness_diversity, lagrange_param, avg_rewards, min_avg_sfs_dist, min_desc_dist) in enumerate(zip(true_returns,
diversity_returns,
training_state_tree.lagrange_params["params"],
training_state_tree.avg_values,
min_avg_sfs_dists,
min_desc_dists,
)):
metrics_repertoire["return_no_diversity_{}".format(index_fitness)] = fitness
metrics_repertoire["return_diversity_{}".format(index_fitness)] = fitness_diversity
metrics_repertoire["lagrange_param_{}".format(index_fitness)] = lagrange_param
metrics_repertoire["avg_reward_{}".format(index_fitness)] = avg_rewards
metrics_repertoire["min_avg_sfs_dists_{}".format(index_fitness)] = min_avg_sfs_dist
metrics_repertoire["min_desc_dists_{}".format(index_fitness)] = min_desc_dist
metrics_repertoire = jax.tree_util.tree_map(lambda metric: jnp.repeat(metric, config.algo.log_period), metrics_repertoire)
# Metrics
# current_metrics = jax.tree_map(lambda metric: jnp.mean(metric, axis=1), current_metrics) # Averaging over all policies.
current_metrics["iteration"] = jnp.arange(1+config.algo.log_period*i, 1+config.algo.log_period*(i+1), dtype=jnp.int32)
current_metrics["time"] = jnp.repeat(timelapse, config.algo.log_period)
# Use tree_map to print the shapes of current metrics
print("current_metrics shapes", jax.tree_map(lambda x: x.shape, current_metrics))
current_metrics = {**current_metrics, **metrics_repertoire}
metrics = jax.tree_util.tree_map(lambda metric, current_metric: jnp.concatenate([metric, current_metric], axis=0), metrics, current_metrics)
# Log
log_metrics = jax.tree_util.tree_map(lambda metric: metric[-1], metrics)
csv_logger.log(log_metrics)
wandb.log(log_metrics)
# Metrics
with open("./metrics.pickle", "wb") as metrics_file:
pickle.dump(metrics, metrics_file)
# Actor
state_dict = serialization.to_state_dict(training_state_tree.policy_params)
with open("./actor/actor_{}.pickle".format(int(metrics["iteration"][-1])), "wb") as params_file:
pickle.dump(state_dict, params_file)
# Actor
state_dict = serialization.to_state_dict(training_state_tree.policy_params)
with open("./actor/actor.pickle", "wb") as params_file:
pickle.dump(state_dict, params_file)
# Repertoire
repertoire.save(path="./repertoire/")
if __name__ == "__main__":
cs = ConfigStore.instance()
cs.store(name="config", node=Config)
main()