diff --git a/Segment_Delaunay_graph_2/examples/Segment_Delaunay_graph_2/CMakeLists.txt b/Segment_Delaunay_graph_2/examples/Segment_Delaunay_graph_2/CMakeLists.txt index 88944af92745..7d280fb1feba 100644 --- a/Segment_Delaunay_graph_2/examples/Segment_Delaunay_graph_2/CMakeLists.txt +++ b/Segment_Delaunay_graph_2/examples/Segment_Delaunay_graph_2/CMakeLists.txt @@ -4,13 +4,19 @@ cmake_minimum_required(VERSION 3.1...3.23) project(Segment_Delaunay_graph_2_Examples) -find_package(CGAL REQUIRED) +find_package(CGAL REQUIRED OPTIONAL_COMPONENTS Core) -# create a target per cppfile -file( - GLOB cppfiles - RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} - ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp) -foreach(cppfile ${cppfiles}) - create_single_source_cgal_program("${cppfile}") -endforeach() +create_single_source_cgal_program("sdg-count-sites.cpp") +create_single_source_cgal_program("sdg-fast-sp.cpp") +create_single_source_cgal_program("sdg-fast-sp-polygon.cpp") +create_single_source_cgal_program("sdg-filtered-traits.cpp") +create_single_source_cgal_program("sdg-info-set.cpp") +create_single_source_cgal_program("sdg-red-blue-info.cpp") +create_single_source_cgal_program("sdg-voronoi-edges.cpp") + +find_package(LEDA QUIET) +if(CGAL_Core_FOUND OR LEDA_FOUND) + create_single_source_cgal_program("sdg-advanced-draw.cpp") +else() + message("NOTICE: The program sdg-advanced-draw requires CGAL_Core or LEDA, and will not be compiled.") +endif() diff --git a/Segment_Delaunay_graph_2/examples/Segment_Delaunay_graph_2/sdg-advanced-draw.cpp b/Segment_Delaunay_graph_2/examples/Segment_Delaunay_graph_2/sdg-advanced-draw.cpp new file mode 100644 index 000000000000..95b6b16c84a8 --- /dev/null +++ b/Segment_Delaunay_graph_2/examples/Segment_Delaunay_graph_2/sdg-advanced-draw.cpp @@ -0,0 +1,512 @@ +#include +#include + +#include +#include +#include + +#include +#include + +#include +#include +#include +#include +#include + +#define SDG_DRAW_DEBUG // debug log +#define SDG_DRAW_DUMP_FILES // print input / ouput +// #define SINGLE_INPUT_FILE // if not defined, each segment of the input has its own file + +#ifdef SDG_DRAW_DUMP_FILES_PP // also print parabolas +#define SDG_DRAW_DUMP_FILES +#endif + +typedef CGAL::Simple_cartesian CK; +typedef CK::Point_2 Point_2; +typedef CK::Segment_2 Segment_2; +typedef CGAL::Field_with_sqrt_tag CM; +typedef CGAL::Exact_predicates_exact_constructions_kernel_with_sqrt EK; +typedef CGAL::Field_with_sqrt_tag EM; +typedef CGAL::Simple_cartesian > FK; +typedef CGAL::Field_with_sqrt_tag FM; +typedef CGAL::Segment_Delaunay_graph_filtered_traits_2 Gt; +typedef CGAL::Segment_Delaunay_graph_2 SDG; + +///////////////////////////////// CODE ABOUT EXACT DUALS /////////////////////////////////////////// + +template < typename ExactSite, typename ExactKernel, + typename SDGSite, typename InputKernel > +ExactSite convert_site_to_exact(const SDGSite &site, + const InputKernel & /*k*/, + const ExactKernel & /*ek*/) +{ + using To_exact = CGAL::Cartesian_converter; + To_exact to_exact; + + // Note: in theory, a site can be constructed from more than just one or two points + // (e.g. 4 points for the segment defined by the intersection of two segments). Thus, it + // would be better to convert the input points at the very beginning and just maintain + // a type of map between the base and exact sites. + ExactSite es; + if(site.is_point()) + es = ExactSite::construct_site_2(to_exact(site.point())); + else + es = ExactSite::construct_site_2(to_exact(site.segment().source()), to_exact(site.segment().target())); + + return es; +} + +// Dual (Voronoi site) of an SDG face +template < typename FiniteFacesIterator, typename InputKernel, typename ExactKernel > +typename ExactKernel::Point_2 exact_primal(const FiniteFacesIterator sdg_f, + const InputKernel& k, + const ExactKernel& ek) +{ + using Exact_SDG_traits = CGAL::Segment_Delaunay_graph_traits_2; + using Exact_site_2 = typename Exact_SDG_traits::Site_2; + + static Exact_SDG_traits e_sdg_gt; + const Exact_site_2 es0 = convert_site_to_exact(sdg_f->vertex(0)->site(), k, ek); + const Exact_site_2 es1 = convert_site_to_exact(sdg_f->vertex(1)->site(), k, ek); + const Exact_site_2 es2 = convert_site_to_exact(sdg_f->vertex(2)->site(), k, ek); + + return e_sdg_gt.construct_svd_vertex_2_object()(es0, es1, es2); +} + +// Dual (Voronoi edge) of an SDG edge +// this function is identical 'SDG::primal()', but with a conversion to exact sites +template < typename Edge, typename InputKernel, typename ExactKernel > +CGAL::Object exact_primal(const Edge& e, + const SDG& sdg, + const InputKernel& k, + const ExactKernel& ek) +{ + using Exact_SDG_traits = CGAL::Segment_Delaunay_graph_traits_2; + using Exact_site_2 = typename Exact_SDG_traits::Site_2; + + using DT = CGAL::Field_with_sqrt_tag; + using Construct_sdg_bisector_2 = CGAL::SegmentDelaunayGraph_2::Construct_sdg_bisector_2; + using Construct_sdg_bisector_ray_2 = CGAL::SegmentDelaunayGraph_2::Construct_sdg_bisector_ray_2; + using Construct_sdg_bisector_segment_2 = CGAL::SegmentDelaunayGraph_2::Construct_sdg_bisector_segment_2; + + CGAL_precondition(!sdg.is_infinite(e)); + + if(sdg.dimension() == 1) + { + Exact_site_2 p = convert_site_to_exact((e.first)->vertex(sdg.cw(e.second))->site(), k, ek); + Exact_site_2 q = convert_site_to_exact((e.first)->vertex(sdg.ccw(e.second))->site(), k, ek); + + return make_object(Construct_sdg_bisector_2()(p, q)); + } + + // dimension == 2 + // neither of the two adjacent faces is infinite + if((!sdg.is_infinite(e.first)) && (!sdg.is_infinite(e.first->neighbor(e.second)))) + { + Exact_site_2 p = convert_site_to_exact((e.first)->vertex(sdg.ccw(e.second))->site(), k, ek); + Exact_site_2 q = convert_site_to_exact((e.first)->vertex(sdg.cw(e.second))->site(), k, ek); + Exact_site_2 r = convert_site_to_exact((e.first)->vertex(e.second)->site(), k, ek); + Exact_site_2 s = convert_site_to_exact(sdg.tds().mirror_vertex(e.first, e.second)->site(), k, ek); + + return Construct_sdg_bisector_segment_2()(p, q, r, s); + } + + // both of the adjacent faces are infinite + if(sdg.is_infinite(e.first) && sdg.is_infinite(e.first->neighbor(e.second))) + { + Exact_site_2 p = convert_site_to_exact((e.first)->vertex(sdg.cw(e.second))->site(), k, ek); + Exact_site_2 q = convert_site_to_exact((e.first)->vertex(sdg.ccw(e.second))->site(), k, ek); + + return make_object(Construct_sdg_bisector_2()(p, q)); + } + + // only one of the adjacent faces is infinite + CGAL_assertion(sdg.is_infinite(e.first) || sdg.is_infinite(e.first->neighbor(e.second))); + CGAL_assertion(!(sdg.is_infinite(e.first) && sdg.is_infinite(e.first->neighbor(e.second)))); + CGAL_assertion(sdg.is_infinite(e.first->vertex(e.second)) || sdg.is_infinite(sdg.tds().mirror_vertex(e.first, e.second))); + + Edge ee = e; + if(sdg.is_infinite(e.first->vertex(e.second))) + { + ee = Edge(e.first->neighbor(e.second), + e.first->neighbor(e.second)->index(sdg.tds().mirror_vertex(e.first, e.second))); + } + + Exact_site_2 p = convert_site_to_exact(ee.first->vertex(sdg.ccw(ee.second))->site(), k, ek); + Exact_site_2 q = convert_site_to_exact(ee.first->vertex(sdg.cw(ee.second))->site(), k, ek); + Exact_site_2 r = convert_site_to_exact(ee.first->vertex(ee.second)->site(), k, ek); + + return make_object(Construct_sdg_bisector_ray_2()(p, q, r)); +} + +///////////////////////////////// CODE TO DRAW A CROPPED DIAGRAM /////////////////////////////////// + +// Split a Voronoi edge that is a parabola (one site is a point, one site is a segment) into small segments +template +void segment_parabola(const CGAL::Parabola_segment_2& p, + const CGAL::Bbox_2& scaled_bbox, + SegmentContainer& segment_list) +{ + using FT = typename OutputKernel::FT; + using Point_2 = typename OutputKernel::Point_2; + + const Point_2& o = p.origin(); + const Point_2& c = p.center(); + + // @todo could be cached + const Point_2 mm(scaled_bbox.xmin(), scaled_bbox.ymin()); + const Point_2 mM(scaled_bbox.xmin(), scaled_bbox.ymax()); + const Point_2 Mm(scaled_bbox.xmax(), scaled_bbox.ymin()); + const Point_2 MM(scaled_bbox.xmax(), scaled_bbox.ymax()); + + FT s = CGAL::squared_distance(mm, c); + s = (std::max)(s, CGAL::squared_distance(mM, c)); + s = (std::max)(s, CGAL::squared_distance(Mm, c)); + s = (std::max)(s, CGAL::squared_distance(MM, c)); + + s = CGAL::sqrt(s) - CGAL::sqrt(CGAL::squared_distance(c, o)); + + const double lx = scaled_bbox.xmax() - scaled_bbox.xmin(); + const double ly = scaled_bbox.ymax() - scaled_bbox.ymin(); + + const double max_length = 0.001 * (std::min)(lx, ly); // max length in the discretization of a parabola + +#ifdef SDG_DRAW_DEBUG + std::cout << "origin & center: " << o << " [[]] " << c << std::endl; + std::cout << "max length " << max_length << std::endl; +#endif + + std::vector points; + p.generate_points(points, max_length, -s, s); + +#ifdef SDG_DRAW_DEBUG + std::cout << "Discretize parabola into " << points.size() << " points" << std::endl; + for(const auto& pt : points) + std::cout << CGAL::to_double(pt.x()) << " " << CGAL::to_double(pt.y()) << " 0" << std::endl; + std::cout << "end of parabola" << std::endl; +#endif + + if(points.size() < 2) + return; + + for(std::size_t i=0, ps=points.size()-1; i +void fill_Voronoi_structure(const SDG& sdg, + const CGAL::Bbox_2& scaled_bbox, + LineContainer& line_list, + RayContainer& ray_list, + SegmentContainer& segment_list) +{ + using Line_2 = typename OutputKernel::Line_2; + using Ray_2 = typename OutputKernel::Ray_2; + using Segment_2 = typename OutputKernel::Segment_2; + using SDG_traits = CGAL::Segment_Delaunay_graph_traits_2; + + CK k; + OutputKernel ek; + + Line_2 l; + Ray_2 r; + Segment_2 s; + CGAL::Parabola_segment_2 p; + + int nl = 0, ns = 0, nr = 0, np = 0; + + typename SDG::Finite_edges_iterator eit = sdg.finite_edges_begin(), + eend = sdg.finite_edges_end(); + for (; eit != eend; ++eit) + { + CGAL::Object o = exact_primal(*eit, sdg, k, ek); + + if(CGAL::assign(l, o)) { line_list.push_back(l); ++nl; } + if(CGAL::assign(s, o)) { segment_list.push_back(s); ++ns; } + if(CGAL::assign(r, o)) { ray_list.push_back(r); ++nr; } + if(CGAL::assign(p, o)) { segment_parabola(p, scaled_bbox, segment_list); ++np; } + } + +#ifdef SDG_DRAW_DEBUG + std::cout << nl << " lines" << std::endl; + std::cout << ns << " segments" << std::endl; + std::cout << nr << " rays" << std::endl; + std::cout << np << " parabolas" << std::endl; +#endif +} + +template +struct Box_clipper +{ + bool operator()(const T& obj, + const typename OutputKernel::Iso_rectangle_2& bbox, + OutputIterator oit) const + { + CGAL::Object obj_cgal = CGAL::intersection(obj, bbox); + + typename OutputKernel::Segment_2 s; + bool ret = CGAL::assign(s, obj_cgal); + if(ret) + oit++ = s; + + return ret; + } +}; + +template +struct Box_clipper +{ + bool operator()(const typename OutputKernel::Segment_2& is, + const typename OutputKernel::Iso_rectangle_2& bbox, + OutputIterator oit) const + { + if(bbox.has_on_unbounded_side(is.source()) && bbox.has_on_unbounded_side(is.target())) + return false; + + if(!bbox.has_on_unbounded_side(is.source()) && !bbox.has_on_unbounded_side(is.target())) + { + oit++ = is; + return true; + } + + CGAL::Object obj_cgal = CGAL::intersection(is, bbox); + + typename OutputKernel::Segment_2 s; + bool ret = CGAL::assign(s, obj_cgal); + if(ret) + oit++ = s; + + return ret; + } +}; + +template +void draw_dual(const LineContainer& lines, + const RayContainer& rays, + const SegmentContainer& segments, + const typename OutputKernel::Iso_rectangle_2& bbox, + OutputIterator oit) +{ + using Line_2 = typename OutputKernel::Line_2; + using Ray_2 = typename OutputKernel::Ray_2; + using Segment_2 = typename OutputKernel::Segment_2; + + typedef Box_clipper Line_clipper; + typedef Box_clipper Ray_clipper; + typedef Box_clipper Segment_clipper; + + Line_clipper lc; + Ray_clipper rc; + Segment_clipper sc; + + for(const Line_2& line : lines) + lc(line, bbox, oit); + for(const Ray_2& ray : rays) + rc(ray, bbox, oit); + for(const Segment_2& segment : segments) + sc(segment, bbox, oit); +} + +template< typename OutputKernel, typename OutputIterator > +OutputIterator draw_SDG(const SDG& sdg, + const typename OutputKernel::Iso_rectangle_2& bbox, + const CGAL::Bbox_2& scaled_bbox, + OutputIterator oit) +{ + using Line_2 = typename OutputKernel::Line_2; + using Ray_2 = typename OutputKernel::Ray_2; + using Segment_2 = typename OutputKernel::Segment_2; + + std::list line_list; + std::list ray_list; + std::list segment_list; + + fill_Voronoi_structure(sdg, scaled_bbox, line_list, ray_list, segment_list); + draw_dual(line_list, ray_list, segment_list, bbox, oit); + + return oit; +} + +int main(int argc, char** argv) +{ + std::cout.precision(17); + std::cout << std::fixed; + + if(argc < 2) + std::cout << "Usage: " << argv[0] << " input.cin" << std::endl; + +#ifdef SDG_DRAW_DUMP_FILES + // dump the input + std::ifstream input((argc > 1) ? argv[1] : "./data/sites.cin"); + assert(input); + + std::string str; + int i = 0; + +# ifdef SINGLE_INPUT_FILE + std::ofstream in_out("input.cgal"); + in_out.precision(17); +# endif + + // read line by line, and distinguish between point and segment + std::string line; + while(std::getline(input, line)) + { +# ifndef SINGLE_INPUT_FILE + std::stringstream oss; + oss << "input_" << i++ << ".cgal" << std::ends; + std::ofstream in_out(oss.str().c_str()); + in_out.precision(17); +# endif + + std::stringstream ss(line); + ss >> str; + if(str == "s") + { + double x0, y0, x1, y1; + ss >> x0 >> y0 >> x1 >> y1; + + in_out << "2 " << x0 << " " << y0 << " 0 "; + in_out << x1 << " " << y1 << " 0\n"; + } + else if(str == "p") + { + double x, y; + ss >> x >> y; + + in_out << "2 " << x << " " << y << " 0\n"; + in_out << x << " " << y << " 0\n"; // abusive 0-length polyline + } + else + { + std::cerr << "Error: Unknown input: " << str << std::endl; + return EXIT_FAILURE; + } + +# ifndef SINGLE_INPUT_FILE + in_out.close(); +# endif + } +# ifdef SINGLE_INPUT_FILE + in_out.close(); +# endif +#endif + + std::ifstream ifs((argc > 1) ? argv[1] : "./data/sites.cin"); + assert(ifs); + + // polygon points + std::set all_points; + + // segments of the polygon as a pair of point indices + std::vector points; + std::vector segments; + SDG::Site_2 site; + + // read segment input, format: + // s [x0 y0 x1 y1] + // p [x y] + + while (ifs >> site) + { + if(site.is_segment()) + { + all_points.insert(site.source_of_supporting_site()); + all_points.insert(site.target_of_supporting_site()); + segments.push_back(site.segment()); + } + else + { + all_points.insert(site.point()); + points.push_back(site.point()); + } + } + + if(points.empty() && segments.empty()) + { + std::cerr << "Nothing in input..." << std::endl; + return EXIT_SUCCESS; + } + + // insert the sites all at once using spatial sorting to speed the insertion + SDG sdg; + sdg.insert_points(points.begin(), points.end()); + sdg.insert_segments(segments.begin(), segments.end()); + assert(sdg.is_valid(true, 1)); // validate the segment Delaunay graph + + typedef EK OK; // output kernel + std::list svd_edges; + + // Get the bbox of the input points, and grow it a bit + const CGAL::Bbox_2 bbox = bbox_2(all_points.begin(), all_points.end()); + const double xmin = bbox.xmin(), xmax = bbox.xmax(); + const double ymin = bbox.ymin(), ymax = bbox.ymax(); + const double xmid = 0.5 * (xmin + xmax), ymid = 0.5 * (ymin + ymax); + const double scaling_factor = 3.; // '0.5' gives the identity + const double lx = scaling_factor * (xmax - xmin), + ly = scaling_factor * (ymax - ymin); + const CGAL::Bbox_2 scaled_bbox(xmid - lx, ymid - ly, xmid + lx, ymid + ly); + const OK::Iso_rectangle_2 bounding_iso_rec(scaled_bbox); + +#ifdef SDG_DRAW_DEBUG + std::cout << "bbox: " << bbox.xmin() << " " << bbox.ymin() << std::endl; + std::cout << "bbox: " << bbox.xmax() << " " << bbox.ymax() << std::endl; + std::cout << "lx/y: " << lx << " " << ly << std::endl; + std::cout << "Scaled bbox: " << scaled_bbox.xmin() << " " << scaled_bbox.ymin() << std::endl; + std::cout << "Scaled bbox: " << scaled_bbox.xmax() << " " << scaled_bbox.ymax() << std::endl; +#endif + + draw_SDG(sdg, bounding_iso_rec, scaled_bbox, std::back_inserter(svd_edges)); + +#ifdef SDG_DRAW_DEBUG + std::cout << "Edges of the diagram (exact form):" << std::endl; + for(const OK::Segment_2& edge : svd_edges) + std::cout << edge << "\n"; + + std::cout << "Now in the double, approximate format..." << std::endl; + for(const OK::Segment_2& edge : svd_edges) + { + std::cout << CGAL::to_double(edge.source().x()) << " "; + std::cout << CGAL::to_double(edge.source().y()) << " "; + std::cout << CGAL::to_double(edge.target().x()) << " "; + std::cout << CGAL::to_double(edge.target().y()) << "\n"; + } +#endif + +#ifdef SDG_DRAW_DUMP_FILES + // This file can be visualized with the CGAL 3D Polyhedron Demo + std::ofstream out("dual.cgal"); + out.precision(17); + for(const OK::Segment_2& edge : svd_edges) + { + out << "2 " << CGAL::to_double(edge.source().x()) << " "; + out << CGAL::to_double(edge.source().y()) << " 0 "; + out << CGAL::to_double(edge.target().x()) << " "; + out << CGAL::to_double(edge.target().y()) << " 0\n"; + } +#endif + + std::cout << "Done" << std::endl; + + return EXIT_SUCCESS; +}