-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbootstrap.py
executable file
·316 lines (245 loc) · 11.6 KB
/
bootstrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/env python
import numpy as np
#import cPickle as pickle
import pickle
def createCI(data, B, quantile):
data.sort()
index_low = int(B*(quantile/2.0)-1)
index_high = int(B*(1-(quantile/2.0))-1)
index_middle = int((B/2.0)-1)
ci_low = data[index_low]
ci_high = data[index_high]
bs_mean = data[index_middle]
bs_median = np.median(data)
return (ci_low, bs_mean, ci_high, bs_median)
# bootstrap a reliability curve
def bootstrap_rel(fcst_yes, obs_yes, bins=21, alpha=0.95, B=10000):
n = fcst_yes.shape[0] #number of days
idx = np.random.randint(0, n, (B,n))
fcst_yes_draw = fcst_yes[idx,:]
obs_yes_draw = obs_yes[idx,:]
# sum over number of days
fcst_yes_draw_sum = np.sum(fcst_yes_draw, axis=1)
obs_yes_draw_sum = np.sum(obs_yes_draw, axis=1)
rel = obs_yes_draw_sum/fcst_yes_draw_sum
cis = []
for k in range(bins):
cis.append(createCI(rel[:,k], B, 1-alpha))
return np.array(cis)
# bootstrap one set of FSS values
def bootstrap_fss(fss1=None, fss2=None, alpha=0.95, B=10000):
fbs, fbsworst = fss1
n = fbs.size
idx = np.random.randint(0, n, (B,n))
fbs_draw = fbs[idx]
fbs_worst_draw = fbsworst[idx]
fbs_sum = np.sum(fbs_draw, axis=1)
fbs_worst_sum = np.sum(fbs_worst_draw, axis=1)
fss = (1 - (fbs_sum/fbs_worst_sum))
if fss2 is not None:
fbs, fbsworst = fss2
fbs_draw = fbs[idx]
fbs_worst_draw = fbsworst[idx]
fbs_sum = np.sum(fbs_draw, axis=1)
fbs_worst_sum = np.sum(fbs_worst_draw, axis=1)
fss2 = (1 - (fbs_sum/fbs_worst_sum))
stat = fss2 - fss
else:
stat = fss
return createCI(stat,B,1-alpha)
def bootstrap_bss(bss1=None, bss2=None, alpha=0.9, B=10000):
bs, bs_ref = bss1
n = bs.size
idx = np.random.randint(0, n, (B,n))
bs_draw = bs[idx]
bs_ref_draw = bs_ref[idx]
bs_sum = np.sum(bs_draw, axis=1)
bs_ref_sum = np.sum(bs_ref_draw, axis=1)
bss = (1 - (bs_sum/bs_ref_sum))
if bss2 is not None:
bs, bs_ref = bss2
bs_draw = bs[idx]
bs_ref_draw = bs_ref[idx]
bs_sum = np.sum(bs_draw, axis=1)
bs_ref_sum = np.sum(bs_ref_draw, axis=1)
bss2 = (1 - (bs_sum/bs_ref_sum))
stat = bss2 - bss
else:
stat = bss
return createCI(stat, B, 1-alpha)
def bootstrap_auc_null_distribution(auc1=None, auc2=None, alpha=0.99, B=10000):
hits1, miss1, fals1, cneg1 = auc1
hits2, miss2, fals2, cneg2 = auc2
n = hits1.shape[0] #number of days
idx = np.random.randint(2, size=(B,n), dtype='bool')
idx = np.array([idx, np.logical_not(idx)])
hits_combined = np.array([hits1, hits2])
miss_combined = np.array([miss1, miss2])
fals_combined = np.array([fals1, fals2])
cneg_combined = np.array([cneg1, cneg2])
aucs_a, aucs_b = [], []
for i in range(B):
### CONSTRUCT RANDOM CONTINGENCY TABLES FROM EITHER FORECAST 1 or 2, DO THIS B TIMES
# pick randomly either from forecast 1 or forecast 2, B times
hits_a = hits_combined[idx[:,i,:],:]
miss_a = miss_combined[idx[:,i,:],:]
fals_a = fals_combined[idx[:,i,:],:]
cneg_a = cneg_combined[idx[:,i,:],:]
# compute contingency table by summing over forecasts
hits_a_sum = np.sum(hits_a, axis=0)
miss_a_sum = np.sum(miss_a, axis=0)
fals_a_sum = np.sum(fals_a, axis=0)
cneg_a_sum = np.sum(cneg_a, axis=0)
# compute pod, pofd using those contingency tables
pod = hits_a_sum / (hits_a_sum + miss_a_sum)
pofd = fals_a_sum / (cneg_a_sum + fals_a_sum)
pod_a, pofd_a = np.nan_to_num(pod), np.nan_to_num(pofd)
auc = 0
for j in range(0,pod_a.shape[0]-1):
auc += ((pod_a[j]+pod_a[j+1])/2.0)*(pofd_a[j]-pofd_a[j+1])
aucs_a.append(auc)
### CONSTRUCT RANDOM CONTINGENCY TABLES FROM EITHER FORECAST 1 or 2, DO THIS B TIMES
idx = np.logical_not(idx)
hits_b = hits_combined[idx[:,i,:],:]
miss_b = miss_combined[idx[:,i,:],:]
fals_b = fals_combined[idx[:,i,:],:]
cneg_b = cneg_combined[idx[:,i,:],:]
# compute contingency table by summing over forecasts
hits_b_sum = np.sum(hits_b, axis=0)
miss_b_sum = np.sum(miss_b, axis=0)
fals_b_sum = np.sum(fals_b, axis=0)
cneg_b_sum = np.sum(cneg_b, axis=0)
# compute pod, pofd using those contingency tables
pod = hits_b_sum / (hits_b_sum + miss_b_sum)
pofd = fals_b_sum / (cneg_b_sum + fals_b_sum)
pod_b, pofd_b = np.nan_to_num(pod), np.nan_to_num(pofd)
auc = 0
for j in range(0,pod_b.shape[0]-1):
auc += ((pod_b[j]+pod_b[j+1])/2.0)*(pofd_b[j]-pofd_b[j+1])
aucs_b.append(auc)
# null distribution of AUC differences
auc_diffs = np.array(aucs_b) - np.array(aucs_a)
return createCI(auc_diffs, B, 1-alpha)
def bootstrap_auc(auc1=None, auc2=None, alpha=0.99, B=10000):
hits, miss, fals, cneg = auc1
n = hits.shape[0]
idx = np.random.randint(0, n, (B,n))
# get B random samples of n days
hits_draw = hits[idx,:]
miss_draw = miss[idx,:]
fals_draw = fals[idx,:]
cneg_draw = cneg[idx,:]
# compute contingency table by summing those elements
hits_sum = np.sum(hits_draw, axis=1)
miss_sum = np.sum(miss_draw, axis=1)
fals_sum = np.sum(fals_draw, axis=1)
cneg_sum = np.sum(cneg_draw, axis=1)
# compute pod, pofd using those contingency tables
pod = hits_sum / (hits_sum + miss_sum)
pofd = fals_sum / (cneg_sum + fals_sum)
pod, pofd = np.nan_to_num(pod), np.nan_to_num(pofd)
# for each sample, compute an AUC
aucs = []
for i in range(0,B):
auc = 0
for j in range(0,pod.shape[1]-1):
auc += ((pod[i,j]+pod[i,j+1])/2.0)*(pofd[i,j]-pofd[i,j+1])
aucs.append(auc)
if auc2 is not None:
hits, miss, fals, cneg = auc2
hits_draw = hits[idx,:]
miss_draw = miss[idx,:]
fals_draw = fals[idx,:]
cneg_draw = cneg[idx,:]
hits_sum = np.sum(hits_draw, axis=1)
miss_sum = np.sum(miss_draw, axis=1)
fals_sum = np.sum(fals_draw, axis=1)
cneg_sum = np.sum(cneg_draw, axis=1)
pod = hits_sum / (hits_sum + miss_sum)
pofd = fals_sum / (cneg_sum + fals_sum)
pod, pofd = np.nan_to_num(pod), np.nan_to_num(pofd)
aucs2 = []
for i in range(0,B):
auc = 0
for j in range(0,pod.shape[1]-1):
auc += ((pod[i,j]+pod[i,j+1])/2.0)*(pofd[i,j]-pofd[i,j+1])
aucs2.append(auc)
stat = np.array(aucs2) - np.array(aucs)
else:
stat = aucs
return createCI(np.array(stat), B, 1-alpha)
def bootstrap_ets(ets1=None, ets2=None, alpha=0.99, B=10000):
hits, miss, fals, cneg = ets1
n = hits.shape[0]
idx = np.random.randint(0, n, (B,n))
# get B random samples of n days
hits_draw = hits[idx]
miss_draw = miss[idx]
fals_draw = fals[idx]
cneg_draw = cneg[idx]
# compute contingency table by summing those elements
hits_sum = np.sum(hits_draw, axis=1)
miss_sum = np.sum(miss_draw, axis=1)
fals_sum = np.sum(fals_draw, axis=1)
cneg_sum = np.sum(cneg_draw, axis=1)
hits_random = (hits_sum + miss_sum)*(hits_sum + fals_sum) / (hits_sum + miss_sum + fals_sum + cneg_sum)
ets_all = (hits_sum-hits_random) / (hits_sum + fals_sum + miss_sum - hits_random)
if ets2 is not None:
hits, miss, fals, cneg = ets2
hits_draw = hits[idx]
miss_draw = miss[idx]
fals_draw = fals[idx]
cneg_draw = cneg[idx]
hits_sum = np.sum(hits_draw, axis=1)
miss_sum = np.sum(miss_draw, axis=1)
fals_sum = np.sum(fals_draw, axis=1)
cneg_sum = np.sum(cneg_draw, axis=1)
hits_random = (hits_sum + miss_sum)*(hits_sum + fals_sum) / (hits_sum + miss_sum + fals_sum + cneg_sum)
ets_all2 = (hits_sum-hits_random)/ (hits_sum + fals_sum + miss_sum - hits_random )
stat = np.array(ets_all2) - np.array(ets_all)
else:
stat = ets_all
return createCI(np.array(stat), B, 1-alpha)
if __name__ == '__main__':
### BOOTSTRAP RELIABILITY ###
#fcst_sums = pickle.load(open('fcst_bin_sums_daily_day1_obsall_NCAR2013_00z_UP_HELI_MAX.pk', 'r'))
#obs_sums = pickle.load(open('obs_bin_sums_daily_day1_obsall_NCAR2013_00z_UP_HELI_MAX.pk', 'r'))
#for i in range(10): print bootstrap_rel(fcst_sums[:,i,8,3], obs_sums[:,i,8,3])
fbs, fbsworst = {}, {}
fbs['rvort'] = pickle.load(open('fbs_day1_NCAR2015_RVORT1_MAX_obstorn_00z.pk', 'r'))
fbs['uh'] = pickle.load(open('fbs_day1_NCAR2015_UP_HELI_MAX_obstorn_00z.pk', 'r'))
fbs['uh03'] = pickle.load(open('fbs_day1_NCAR2015_UP_HELI_MAX03_obstorn_00z.pk', 'r'))
fbsworst['rvort'] = pickle.load(open('fbsworst_day1_NCAR2015_RVORT1_MAX_obstorn_00z.pk', 'r'))
fbsworst['uh'] = pickle.load(open('fbsworst_day1_NCAR2015_UP_HELI_MAX_obstorn_00z.pk', 'r'))
fbsworst['uh03'] = pickle.load(open('fbsworst_day1_NCAR2015_UP_HELI_MAX03_obstorn_00z.pk', 'r'))
fbs['rvort'] = pickle.load(open('fbs_day1_NCAR2015_RVORT1_MAX_obsall_00z.pk', 'r'))
fbs['uh'] = pickle.load(open('fbs_day1_NCAR2015_UP_HELI_MAX_obsall_00z.pk', 'r'))
fbs['uh03'] = pickle.load(open('fbs_day1_NCAR2015_UP_HELI_MAX03_obsall_00z.pk', 'r'))
fbsworst['rvort'] = pickle.load(open('fbsworst_day1_NCAR2015_RVORT1_MAX_obsall_00z.pk', 'r'))
fbsworst['uh'] = pickle.load(open('fbsworst_day1_NCAR2015_UP_HELI_MAX_obsall_00z.pk', 'r'))
fbs['ncar3det'] = pickle.load(open('fbs_day1_NCAR3kmdet_WSPD10MAX_obswind_00z.pk', 'r'))
fbs['ncar1det'] = pickle.load(open('fbs_day1_NCAR1kmdet_WSPD10MAX_obswind_00z.pk', 'r'))
fbsworst['ncar3det'] = pickle.load(open('fbsworst_day1_NCAR3kmdet_WSPD10MAX_obswind_00z.pk', 'r'))
fbsworst['ncar1det'] = pickle.load(open('fbsworst_day1_NCAR1kmdet_WSPD10MAX_obswind_00z.pk', 'r'))
### MEAN FSS DIFFERENCE BOOTSTRAP ###
fbs['gfs'] = pickle.load(open('fbs_day1_GFS_UP_HELI_MAX_obsall_00z.pk', 'r'))
fbs['gfs12'] = pickle.load(open('fbs_day1_GFS_UP_HELI_MAX_obsall_12z.pk', 'r'))
fbs['gfs12-day2'] = pickle.load(open('fbs_day2_GFS_UP_HELI_MAX_obsall_12z.pk', 'r'))
fbs['ncardet'] = pickle.load(open('fbs_day1_NCAR3kmdet_UP_HELI_MAX_obsall_00z.pk', 'r'))
fbs['ncar'] = pickle.load(open('fbs_day1_NCAR2013_UP_HELI_MAX_obsall_00z.pk', 'r'))
fbs['ncar12'] = pickle.load(open('fbs_day1_NCAR2013_UP_HELI_MAX_obsall_12z.pk', 'r'))
fbs['ncar12-day2'] = pickle.load(open('fbs_day2_NCAR2013_UP_HELI_MAX_obsall_12z.pk', 'r'))
fbsworst['gfs'] = pickle.load(open('fbsworst_day1_GFS_UP_HELI_MAX_obsall_00z.pk', 'r'))
fbsworst['gfs12'] = pickle.load(open('fbsworst_day1_GFS_UP_HELI_MAX_obsall_12z.pk', 'r'))
fbsworst['gfs12-day2'] = pickle.load(open('fbsworst_day2_GFS_UP_HELI_MAX_obsall_12z.pk', 'r'))
fbsworst['ncardet'] = pickle.load(open('fbsworst_day1_NCAR3kmdet_UP_HELI_MAX_obsall_00z.pk', 'r'))
fbsworst['ncar'] = pickle.load(open('fbsworst_day1_NCAR2013_UP_HELI_MAX_obsall_00z.pk', 'r'))
fbsworst['ncar12'] = pickle.load(open('fbsworst_day1_NCAR2013_UP_HELI_MAX_obsall_12z.pk', 'r'))
fbsworst['ncar12-day2']= pickle.load(open('fbsworst_day2_NCAR2013_UP_HELI_MAX_obsall_12z.pk', 'r'))
#print 'ci_low, ci_high, bootstrap_mean, bootstrap_median'
# [daily sums, sigma, thresh, window/hr]
mod2 = ('ncar1det', 6)
mod1 = ('ncar3det', 3)
bs_diff = []
for i in range(10): bs_diff.append(bootstrap_fss((fbs[mod1[0]][:,i,mod1[1],0,0],fbsworst[mod1[0]][:,i,mod1[1],0,0]), (fbs[mod2[0]][:,i,mod2[1],0,0],fbsworst[mod2[0]][:,i,mod2[1],0,0])))
print(np.array(bs_diff)[:,0:3])