-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcheckyaml.py
33 lines (27 loc) · 1.11 KB
/
checkyaml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import logging
from ml_functions import make_fhr_str
import numpy as np
import sys
import yaml
# read ifiles from stdin, like output of find -name config.yaml
# used to check parameters in yaml file like trainstart, trainend, teststart, and testend
for line in sys.stdin:
ifile = line.rstrip()
print(ifile, end=" ")
with open(ifile, "rb") as stream:
yl = yaml.load(stream, Loader=yaml.Loader)
# Namespace
args = yl["args"]
model = args.model
for arg in ["trainstart", "trainend", "teststart", "testend"]:
if hasattr(args, arg):
print(f" {arg}={getattr(args,arg).strftime('%Y%m%dT%H')}", end=" ")
columns = yl["columns"]
if "forecast_hour" in columns:
fhr_scaling_factor_mean = yl["mean"][columns.index("forecast_hour")]
if model != "HRRR" and fhr_scaling_factor_mean != np.mean(args.fhr):
logging.warning(f"{ifile} fhr mean scaling factor {fhr_scaling_factor_mean} does not equal mean of requested fhrs {args.fhr}")
fhr_str = make_fhr_str(args.fhr)
#print(f' {fhr_str}', end=" ")
print(yl["labels"], end=" ")
print()