-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_env_allfields_ncar_parallel.py
executable file
·438 lines (381 loc) · 20.4 KB
/
compute_env_allfields_ncar_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#!/usr/bin/env python
from netCDF4 import Dataset
from ml_functions import upscale
import gzip
import numpy as np
from datetime import *
import pygrib
import time, os, sys
import pickle
#from fieldinfo import readNCLcm
import multiprocessing
from mpl_toolkits.basemap import Basemap
from scipy import spatial
### THIS CODE EVOLVED FROM CODE WITHIN /glade/u/home/sobash/NSC_scripts
### TO UPSCALE 3-KM CAM DATA TO AN 80-KM GRID
def get_message(fh, tdate, validDate, f, level=None):
select_keywords = ncar_grb(f, tdate=tdate, level=level)
# TODO figure out how to select validDate when field has None (like 1-h max UH)
try:
selected_messages = fh.select(analDate=tdate, **select_keywords)
#print('selected', len(selected_messages), 'messages')
except:
print("pygrib.select failed with", select_keywords, end=" ")
selected_messages = None
return selected_messages
def is2016HWT(tdate):
# verified this with COMPOSITE_REFL_10CM
return datetime(2016,5,2,0) <= tdate < datetime(2016,6,4,0)
def is2017HWT(tdate):
# verified this with COMPOSITE_REFL_10CM
return datetime(2017,4,19,0) <= tdate < datetime(2017,6,3,0)
def ncar_grb(f, tdate=datetime(2017,12,30,0), level=None):
#print("ncar_grb():", f, tdate)
grb_dict = {
"COMPOSITE_REFL_10CM" : {"shortName" : "refc"},
"PREC_ACC_NC" : {"shortName" : "tp", "level": 0},
"GHT_PL" : {"shortName" : "gh", "level": level},
"HAILCAST_DIAM_MAX": {"parameterName" : "AFWA Hailcast Diameter Max"},
"MLLCL" : {"shortName" : "gh", "bottomLevel": 0, "topLevel": 9000},
"MLCAPE" : {"shortName" : "cape", "bottomLevel": 0, "topLevel": 9000},
"MLCINH" : {"shortName" : "cin", "bottomLevel": 0, "topLevel": 9000},
"MUCAPE" : {"shortName" : "cape", "bottomLevel": 0, "topLevel": 25500},
"SBCAPE" : {"shortName" : "cape", "level": 0},
"SBCINH" : {"shortName" : "cin", "level": 0},
"SRH01" : {"shortName" : "hlcy", "bottomLevel" : 0, "topLevel" : 1000 },
"SRH03" : {"shortName" : "hlcy", "bottomLevel" : 0, "topLevel" : 3000 },
"T_PL" : {"shortName" : "t", "level": level},
"RH_PL" : {"parameterName" : "Relative humidity", "level": level},
"T2" : {"shortName" : "2t", "level": 2},
"TD2" : {"shortName" : "2d", "level": 2},
"U_PL" : {"shortName" : "u", "level": level},
"V_PL" : {"shortName" : "v", "level": level},
"UP_HELI_MAX" : {"parameterName" : "199", "bottomLevel" : 2000, "topLevel" : 5000 },
"USHR01" : {"shortName": "vucsh", "bottomLevel" : 1000, "topLevel" : 0 },
"VSHR01" : {"shortName": "vvcsh", "bottomLevel" : 1000, "topLevel" : 0 },
"USHR03" : {"shortName": "vucsh", "bottomLevel" : 3000, "topLevel" : 0 },
"VSHR03" : {"shortName": "vvcsh", "bottomLevel" : 3000, "topLevel" : 0 },
"USHR06" : {"shortName": "vucsh", "bottomLevel" : 6000, "topLevel" : 0 },
"VSHR06" : {"shortName": "vvcsh", "bottomLevel" : 6000, "topLevel" : 0 },
"WSPD10MAX" : {"shortName": "10si", "level" : 10 },
}
if is2016HWT(tdate) or is2017HWT(tdate):
#grb_dict["COMPOSITE_REFL_10CM"] = {"parameterName" : "refc", "units" : "dB"} # looks like this in wgrib2
grb_dict["COMPOSITE_REFL_10CM"] = {"parameterName" : "5"} # but looks like this in pygrib.
if datetime(2015,4,1,0) <= tdate < datetime(2015,9,1,0):
grb_dict["COMPOSITE_REFL_10CM"] = {"indicatorOfParameter" : 212}
grb_dict["MLCAPE"] = {"indicatorOfParameter": 157, "typeOfLevel" : "pressureFromGroundLayer", "bottomLevel": 0, "topLevel": 90}
grb_dict["MLCINH"] = {"indicatorOfParameter": 156, "typeOfLevel" : "pressureFromGroundLayer", "bottomLevel": 0, "topLevel": 90}
grb_dict["MUCAPE"] = {"indicatorOfParameter": 157, "typeOfLevel" : "pressureFromGroundLayer", "bottomLevel": 0, "topLevel": 2147483647}
grb_dict["PSFC"] = {"indicatorOfParameter": 1, "typeOfLevel" : "surface", "units" : "Pa"} # This surface pressure has a mean around 85000 Pa, while netCDF surface pressure available starting 2015091600 has a mean around 930. Obviously there is something different.
grb_dict["SBCAPE"] = {"indicatorOfParameter": 157, "typeOfLevel" : "surface"}
grb_dict["SBCINH"] = {"indicatorOfParameter": 156, "typeOfLevel" : "surface"}
grb_dict["SRH01"] = {"parameterName": "190", "typeOfLevel" : "heightAboveGroundLayer", "bottomLevel": 0, "topLevel": 10 }
grb_dict["SRH03"] = {"parameterName": "190", "typeOfLevel" : "heightAboveGroundLayer", "bottomLevel": 0, "topLevel": 30 }
if tdate < datetime(2016,5,3,0):
grb_dict["MLLCL"] = None # MLLCL only starts 2016050200, and it is bad on 2016050200, so start on 2016050300.
return grb_dict[f]
# INTERPOLATE NARR TO 80KM GRID
#fig, axes, m = pickle.load(open('/glade/u/home/wrfrt/rt_ensemble_2018wwe/python_scripts/rt2015_CONUS.pk', 'r'))
awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution='l', area_thresh=10000.)
grid81 = awips.makegrid(93, 65, returnxy=True)
x81, y81 = awips(grid81[0], grid81[1])
#x81 = (x[1:,1:] + x[:-1,:-1])/2.0
#y81 = (y[1:,1:] + y[:-1,:-1])/2.0
mask = pickle.load(open('/glade/u/home/sobash/2013RT/usamask.pk', 'rb'))
mask = mask.reshape((65,93))
sdate = datetime.strptime(sys.argv[1], '%Y%m%d%H')
edate = sdate + timedelta(hours=24)
tdate = sdate
model = 'NCARENS'
mem = 4
debug=False
ofile = '/glade/work/sobash/NSC/%s_%s_mem%d_upscaled.npz'%(sdate.strftime('%Y%m%d%H'),model,mem )
if os.path.exists(ofile):
print(ofile, "exists. exiting cleanly.")
sys.exit(0)
if model == 'NSC1km': f = Dataset('/glade/p/mmm/parc/sobash/NSC/1KM_WRF_POST/2011062500/diags_d01_2011-06-25_00_00_00.nc', 'r')
if model == 'NSC3km-12sec': f = Dataset('/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST_12sec_ts/2011062500/diags_d01_2011-06-25_00_00_00.nc', 'r')
if model == 'GEFS': f = Dataset('/glade/scratch/sobash/ncar_ens/gefs_ics/2017042500/wrf_rundir/ens_1/diags_d02.2017-04-25_00:00:00.nc', 'r')
if model == 'NCARENS': f = pygrib.open('/glade/collections/rda/data/ds300.0/2016/20160701/ncar_3km_2016070100_mem4_f042.grb2')
lats, lons = f[1].latlons()
f.close()
# find closest 3-km or 1-km grid point to each 80-km grid point
gpfname = 'data/nngridpts_80km_%s'%model
if os.path.exists(gpfname):
nngridpts = pickle.load(open(gpfname, 'rb'))
else:
print('finding closest grid points')
xy = awips(lons.ravel(), lats.ravel())
tree = spatial.KDTree(list(zip(xy[0].ravel(),xy[1].ravel())))
nngridpts = tree.query(list(zip(x81.ravel(),y81.ravel())))
pickle.dump(nngridpts, open(gpfname, 'wb'))
ncar_grib_dict = { 44: 'UP_HELI_MAX', 45: 'UP_HELI_MIN', 48: 'UP_HELI_MAX03', 54: 'GRPL_MAX', 39: 'W_UP_MAX', 40: 'W_DN_MAX', 52: 'HAIL_MAX2D', 53: 'HAIL_MAXK1',\
51: 'REL_VORT_MAX01', 75: 'WSPD10MAX', 2: 'COMPOSITE_REFL_10CM', 42: 'REFD_MAX', \
115: 'UBSHR1', 116: 'VBSHR1', 117: 'UBSHR6', 118: 'VBSHR6', 99: 'PWAT', 124: 'SBLCL', 127: 'MLLCL', 97: 'SBCAPE', 98: 'SBCINH', \
128: 'MUCAPE', 129: 'MUCINH', 125: 'MLCAPE', 112: 'SRH01', 111: 'SRH03', 70: 'T2', 72: 'TD2', 62: 'PSFC' }
upscaled_fields = { 'UP_HELI_MAX':[], 'UP_HELI_MAX03':[], 'UP_HELI_MAX01':[], 'W_UP_MAX':[], 'W_DN_MAX':[], 'WSPD10MAX':[], 'STP':[], 'LR75':[], 'CAPESHEAR':[],
'MUCAPE':[], 'SBCAPE':[], 'SBCINH':[], 'MLCINH':[], 'MLLCL':[], 'SHR01':[], 'SHR06': [], 'SRH01':[], 'SRH03':[], 'T2':[], 'TD2':[], 'PSFC':[], 'RAINNC_1H':[], \
'HAILCAST_DIAM_MAX':[], \
'COMPOSITE_REFL_10CM':[], 'REFD_MAX':[], \
'T925':[], 'T850':[], 'T700':[], 'T500':[], 'TD925':[], 'TD850':[], 'TD700':[], 'TD500':[], 'U925':[], 'U850':[], 'U700':[], 'U500':[], 'V925':[], 'V850':[], 'V700':[], 'V500':[], \
'UP_HELI_MAX80':[], 'UP_HELI_MAX120':[], 'UP_HELI_MAX01-120':[] }
press_levels = [1000,925,850,700,600,500,400,300,250,200,150,100]
if False:
# Aside from Spring HWTs, these pressure-level fields are not in NCAR Ensemble archive.
# Present after Aug 2017.
del(upscaled_fields["LR75"]) # No Lapse rate before 20170901. No derived field or pressure-level temperature components with which to derive it.
del(upscaled_fields["T850"])
del(upscaled_fields["T700"])
del(upscaled_fields["T500"])
del(upscaled_fields["TD850"])
del(upscaled_fields["TD700"])
del(upscaled_fields["U850"])
del(upscaled_fields["U700"])
del(upscaled_fields["U500"])
del(upscaled_fields["V850"])
del(upscaled_fields["V700"])
del(upscaled_fields["V500"])
# Missing even after Aug 2017
del(upscaled_fields["T925"])
del(upscaled_fields["TD500"])
del(upscaled_fields["TD925"])
del(upscaled_fields["U925"])
del(upscaled_fields["V925"])
def show_some_grib_keys(fh):
for msg in fh:
print(msg.validDate, end=" ")
for k in ["indicatorOfParameter", "parameterName", "parameterUnits", "indicatorOfTypeOfLevel", "pressUnits",
"bottomLevel", "topLevel", "name"]:
if msg.valid_key(k):
print(f"{k}={msg._get_key(k)}", end=" ")
print(msg.typeOfLevel, end=" ")
print(msg.level, end=" ")
print(msg.shortName, end=" ")
print(msg.units)
def read_ncgz(ncf, f, units=None):
if debug:
print("read_ncgz(): netCDF file", ncf)
with gzip.open(ncf) as gz:
with Dataset('dummy', mode='r', memory=gz.read()) as nc:
# Check for variable existence before checking units.
if f not in nc.variables:
return None
if units:
if nc.variables[f].units != units:
print("read_ncgz(): expected units",units,"for",f,"got",nc.variables[f].units)
sys.exit(1)
this_field = nc.variables[f][:]
return this_field
def get_this_field(f, fh, tdate, fhr, mem=1, fh_previous_hour=None, debug=False):
yyyy = tdate.strftime('%Y')
yyyymmddhh = tdate.strftime('%Y%m%d%H')
yyyymmdd = tdate.strftime('%Y%m%d')
yymmdd = tdate.strftime('%y%m%d')
validDate = tdate + timedelta(hours=fhr)
ncf = "/glade/collections/rda/data/ds300.0/%s/%s/diags_d02_%s_mem_%d_f%03d.nc.gz"%(yyyy,yyyymmdd,yyyymmddhh,mem,fhr)
#print("get_this_field(): netCDF file", ncf)
if debug:
show_some_grib_keys(fh)
if f == 'SHR06':
this_field1 = get_message(fh, tdate, validDate, 'USHR06')
if this_field1 is None: return None
this_field1 = this_field1[0].values
this_field2 = get_message(fh, tdate, validDate, 'VSHR06')[0].values
this_field = np.sqrt(this_field1**2 + this_field2**2)
elif f == 'SHR01':
if get_message(fh, tdate, validDate, 'USHR01') is None: return None
this_field1 = get_message(fh, tdate, validDate, 'USHR01')[0].values
this_field2 = get_message(fh, tdate, validDate, 'VSHR01')[0].values
this_field = np.sqrt(this_field1**2 + this_field2**2)
elif f == 'LR75':
if get_message(fh, tdate, validDate, 'T_PL', level=[500,700]) is None: return None
t500,t700 = [x.values for x in get_message(fh, tdate, validDate, 'T_PL', level=[500,700])]
ht500,ht700 = [x.values for x in get_message(fh, tdate, validDate, 'GHT_PL', level=[500,700])]
this_field = -(t700-t500)/(ht700-ht500)
elif f == 'CAPESHEAR':
if get_message(fh, tdate, validDate, 'USHR06') is None: return None
this_field1 = get_message(fh, tdate, validDate, 'USHR06')[0].values
this_field2 = get_message(fh, tdate, validDate, 'VSHR06')[0].values
shr06 = np.sqrt(this_field1**2 + this_field2**2)
mlcape = get_message(fh, tdate, validDate, 'MLCAPE')
if mlcape is None: return None
mlcape = mlcape[0].values
this_field = mlcape * shr06
elif f == 'STP':
lcl = get_message(fh, tdate, validDate, 'MLLCL')
if lcl is None: return None
lcl = lcl[0].values
sbcape = get_message(fh, tdate, validDate, 'SBCAPE')[0].values
this_field1 = get_message(fh, tdate, validDate, 'USHR01')[0].values
this_field2 = get_message(fh, tdate, validDate, 'VSHR01')[0].values
srh01 = np.sqrt(this_field1**2 + this_field2**2)
sbcinh = get_message(fh, tdate, validDate, 'SBCINH')[0].values
this_field1 = get_message(fh, tdate, validDate, 'USHR06')[0].values
this_field2 = get_message(fh, tdate, validDate, 'VSHR06')[0].values
shr06 = np.sqrt(this_field1**2 + this_field2**2)
lclterm = ((2000.0-lcl)/1000.0)
lclterm = np.where(lcl<1000, 1.0, lclterm)
lclterm = np.where(lcl>2000, 0.0, lclterm)
shrterm = (shr06/20.0)
shrterm = np.where(shr06 > 30, 1.5, shrterm)
shrterm = np.where(shr06 < 12.5, 0.0, shrterm)
cinterm = ((200+sbcinh)/150.0)
cinterm = np.where(cinterm>-50, 1.0, cinterm)
cinterm = np.where(cinterm<-200, 0.0, cinterm)
this_field = (sbcape/1500.0) * lclterm * (srh01/150.0) * shrterm * cinterm
elif f in ['T925', 'T850', 'T700', 'T500']:
level = int(f[1:])
this_field = get_message(fh, tdate, validDate, "T_PL", level=level)
if this_field is None: return None
this_field = this_field[0].values
elif f in ['TD925', 'TD850', 'TD700', 'TD500']:
level = int(f[2:])
t = get_message(fh, tdate, validDate, "T_PL", level=level)
if t is None: return None
t = t[0].values
rh = get_message(fh, tdate, validDate, "RH_PL", level=level)
if rh is None: return None
rh = rh[0].values
import metpy.calc
from metpy.units import units
this_field = metpy.calc.dewpoint_from_relative_humidity(t*units('K'),rh*units('percent'))
elif f in ['U925', 'U850', 'U700', 'U500']:
level = int(f[1:])
idx = press_levels.index(level)
this_field = get_message(fh, tdate, validDate, "U_PL", level=level)
if this_field is None: return None
this_field = this_field[0].values
elif f == "RAINNC_1H":
# If you use PRECIP_ACC_NC from grib file, it changes from 1-hr to accumulated precip during HWT.
previous_hour_ncf = "/glade/collections/rda/data/ds300.0/%s/%s/diags_d02_%s_mem_%d_f%03d.nc.gz"%(yyyy,yyyymmdd,yyyymmddhh,mem,max([0,fhr-1]))
previous_hour_field = read_ncgz(previous_hour_ncf, "RAINNC")
this_field = read_ncgz(ncf, "RAINNC")
this_field = this_field - previous_hour_field
elif tdate < datetime(2015,9,1) and f == 'PSFC':
this_message = get_message(fh, tdate, validDate, f)[0]
assert this_message.units == "Pa"
this_field = this_message.values
if this_field.max() < 1100:
print("max value < 1100. expected units of Pa")
sys.exit(1)
elif f in ['V925', 'V850', 'V700', 'V500']:
level = int(f[1:])
idx = press_levels.index(level)
this_field = get_message(fh, tdate, validDate, "V_PL", level=level)
if this_field is None: return None
this_field = this_field[0].values
elif tdate < datetime(2015,4,21,0) and f in ["T2"]:
#print("2-m T is bad in grib file before 20150421")
# it has range from -32 to a fraction above zero with units Kelvin
this_field = read_ncgz(ncf, f)
elif tdate <= datetime(2016,5,1) and f in ['UP_HELI_MAX', 'UP_HELI_MAX03', 'WSPD10MAX', 'W_DN_MAX', 'W_UP_MAX']:
#print("trying netCDF")
this_field = read_ncgz(ncf, f)
elif f in ['UP_HELI_MAX80', 'UP_HELI_MAX120']:
this_field = read_ncgz(ncf, 'UP_HELI_MAX')
elif f in ['UP_HELI_MAX01-80', 'UP_HELI_MAX01-120']:
this_field = read_ncgz(ncf, 'UP_HELI_MAX01')
elif f == 'PSFC':
# netCDF PSFC only starts 2015091600.
this_field = read_ncgz(ncf, f, units="Pa")
elif f in ['HAILCAST_DIAM_MAX', 'REFD_MAX', 'UP_HELI_MAX01', 'UP_HELI_MAX03', 'W_UP_MAX', 'W_DN_MAX']:
this_field = read_ncgz(ncf, f)
else:
this_field = get_message(fh, tdate, validDate, f)
if this_field is None: return None
this_field = this_field[0].values
return this_field
def get_ungz_fh(wrffile):
import tempfile
tmp = tempfile.NamedTemporaryFile(delete=True)
ungz = gzip.open(wrffile)
tmp.write(ungz.read())
tmp.flush() # TODO necessary?
tmp.seek(0) # TODO necessary?
fh = pygrib.open(tmp.name)
return fh
def upscale_forecast(fhr):
yyyy = tdate.strftime('%Y')
yyyymmddhh = tdate.strftime('%Y%m%d%H')
yyyymmdd = tdate.strftime('%Y%m%d')
yymmdd = tdate.strftime('%y%m%d')
print(time.ctime(time.time()), 'reading', yyyymmddhh, fhr)
this_upscaled_fields = upscaled_fields.copy()
ds300="/glade/collections/rda/data/ds300.0/%s/%s/"%(yyyy,yyyymmdd)
if tdate >= datetime(2015,9,1):
wrffile = ds300+"ncar_3km_%s_mem%d_f%03d.grb2"%(yyyymmddhh,mem,fhr)
wrffile_previous_hour = ds300+"ncar_3km_%s_mem%d_f%03d.grb2"%(yyyymmddhh,mem,max([0,fhr-1]))
else:
wrffile = ds300+"ncar_3km_%s_mem%d_f%03d.grb.gz"%(yyyymmddhh,mem,fhr)
wrffile_previous_hour = ds300+"ncar_3km_%s_mem%d_f%03d.grb.gz"%(yyyymmddhh,mem,max([0,fhr-1]))
print("grib file", wrffile)
if wrffile[-3:] == ".gz":
fh = get_ungz_fh(wrffile)
fh_previous_hour = get_ungz_fh(wrffile_previous_hour)
else:
fh = pygrib.open(wrffile)
fh_previous_hour = pygrib.open(wrffile_previous_hour)
# populate dictionary of upscaled fields
for f in this_upscaled_fields.keys():
print(' {:20s}'.format(f), end="")
#print(time.ctime(time.time()), f)
print('getting f{:02d}'.format(fhr), '...', end=" ")
this_field = get_this_field(f, fh, tdate, fhr, mem=mem, fh_previous_hour = fh_previous_hour, debug=debug)
if this_field is None:
print('None')
continue
print('done.', end=" ")
if debug:
print(f, "before upscale", np.nanmin(this_field), np.nanmedian(this_field), np.nanmean(this_field), np.nanmax(this_field))
# use maximum for certain fields, mean for others
if f in ['UP_HELI_MAX', 'UP_HELI_MAX03', 'UP_HELI_MAX01', 'W_UP_MAX', 'W_DN_MAX', 'WSPD10MAX', 'HAILCAST_DIAM_MAX']:
field_interp = upscale(this_field, nngridpts, type='max', maxsize=27)
elif f in ['UP_HELI_MAX80', 'UP_HELI_MAX01-80']:
field_interp = upscale(this_field, nngridpts, type='max', maxsize=53)
elif f in ['UP_HELI_MAX120', 'UP_HELI_MAX01-120']:
field_interp = upscale(this_field, nngridpts, type='max', maxsize=81) # suppose I could use maxsize=80, but I don't know how even filter size works.
else:
field_interp = upscale(this_field, nngridpts, type='mean', maxsize=81)
print(f"upscaled {np.nanmin(field_interp[mask]):10.3f} {np.nanmedian(field_interp[mask]):10.3f} {np.nanmean(field_interp[mask]):10.3f} {np.nanmax(field_interp[mask]):10.3f}")
this_upscaled_fields[f] = field_interp
return {fhr: this_upscaled_fields}
fh.close()
print('running upscaling in parallel')
nfhr = 37
nprocs = 6
chunksize = int(np.ceil(nfhr / float(nprocs)))
pool = multiprocessing.Pool(processes=nprocs)
fhrs = range(0,nfhr) # random_forest_preprocess_gridded.py assume fhrs starts at 0.
data = pool.map(upscale_forecast, fhrs, chunksize)
pool.close()
# merge dictionaries
combined = {}
for d in data: combined.update(d)
for f in upscaled_fields.keys():
for fhr in fhrs:
upscaled_fields[f].append(combined[fhr][f])
# this script produces files that are slightly larger than the original files - ~2KB - not sure why..
np.savez_compressed(ofile, a=upscaled_fields)
# plotting
plotting = False
if plotting:
import matplotlib.colors as colors
import matplotlib.pyplot as plt
plot_field = np.array(upscaled_fields['MLLCL'])
plot_field = plot_field * mask
print( plot_field.shape)
plot_field = np.amax(plot_field, axis=0)
levels = np.arange(69200,98400,1600)
levels = np.linspace(plot_field.min(), plot_field.max(), 25)
test = readNCLcm('MPL_gist_ncar')[3:]
cmap = colors.ListedColormap(test)
norm = colors.BoundaryNorm(levels, ncolors=cmap.N, clip=True)
##awips.pcolormesh(x81, y81, np.ma.masked_less(u_interp, 100.0), cmap=cmap, norm=norm)
pc = awips.pcolormesh(x81, y81, plot_field, cmap=cmap, norm=norm)
#awips.pcolormesh(x81, y81, env['b'], cmap=cmap, norm=norm)
awips.drawstates()
awips.drawcountries()
awips.drawcoastlines()
pc.get_figure().colorbar(pc)
plt.savefig('test.png')