diff --git a/README.md b/README.md
index 3555d5e..6d2d7d2 100644
--- a/README.md
+++ b/README.md
@@ -100,7 +100,7 @@ skyes = [red_sky, sunny_sky, cloudy_sky, night_sky]
![](https://raw.githubusercontent.com/shonenkov-AI/rudalle-aspect-ratio/main/pics/h_example.jpg)
-### [Kandinsky]()
+### [Kandinsky](https://github.com/ai-forever/ru-dalle/blob/master/jupyters/Kandinsky-12b.ipynb)
`роботы акварелью в стиле ван гога`
![](./pics/kandinsky/example-robots.png)
diff --git a/jupyters/Kandinsky-12b.ipynb b/jupyters/Kandinsky-12b.ipynb
new file mode 100644
index 0000000..fcd3b0f
--- /dev/null
+++ b/jupyters/Kandinsky-12b.ipynb
@@ -0,0 +1,975 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "f72cb26b",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "\n",
+ "\n",
+ "**Author:** [Alex Shonenkov](https://www.kaggle.com/shonenkov)\n",
+ "\n",
+ "**Telegram Channel:** https://t.me/shonenkovAI\n",
+ "\n",
+ "**Discord Server:** https://discord.gg/xV7dNbT9NU "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "acca7b02",
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "!pip install ruclip==0.0.1 > /dev/null\n",
+ "!pip install rudalle==1.1.0 > /dev/null"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "b5394914",
+ "metadata": {
+ "scrolled": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Python 3.7.12\n",
+ "torch: 1.9.1+cu111\n",
+ "rudalle==1.1.0\n",
+ "ruclip==0.0.1\n",
+ "taming-transformers==0.0.1\n",
+ "transformers==4.10.3\n",
+ "torchmetrics==0.5.0\n",
+ "Thu Jun 23 01:21:36 2022 \n",
+ "+-----------------------------------------------------------------------------+\n",
+ "| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.1 |\n",
+ "|-------------------------------+----------------------+----------------------+\n",
+ "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
+ "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
+ "| | | MIG M. |\n",
+ "|===============================+======================+======================|\n",
+ "| 0 A100 Graphics D... On | 00000000:87:00.0 Off | 0 |\n",
+ "| N/A 30C P0 63W / 400W | 0MiB / 81252MiB | 0% Default |\n",
+ "| | | Disabled |\n",
+ "+-------------------------------+----------------------+----------------------+\n",
+ " \n",
+ "+-----------------------------------------------------------------------------+\n",
+ "| Processes: |\n",
+ "| GPU GI CI PID Type Process name GPU Memory |\n",
+ "| ID ID Usage |\n",
+ "|=============================================================================|\n",
+ "| No running processes found |\n",
+ "+-----------------------------------------------------------------------------+\n"
+ ]
+ }
+ ],
+ "source": [
+ "import torch\n",
+ "!python --version\n",
+ "print('torch:', torch.__version__)\n",
+ "!pip freeze | grep rudalle\n",
+ "!pip freeze | grep ruclip\n",
+ "!pip freeze | grep transformers\n",
+ "!pip freeze | grep torchmetrics\n",
+ "!nvidia-smi"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "36c7ccf8",
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import ruclip\n",
+ "import requests\n",
+ "from rudalle.pipelines import generate_images, show, cherry_pick_by_ruclip\n",
+ "from rudalle import get_rudalle_model, get_tokenizer, get_vae\n",
+ "from rudalle.utils import seed_everything\n",
+ "from rudalle.image_prompts import ImagePrompts\n",
+ "from PIL import Image, ImageDraw"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ab7248d8",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "## Prepare models"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "06d0ac4d",
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "KANDINSKY_TOKEN = ''"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "8b7ded49",
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "119a6147622a40aeaa8d2ebe7323b199",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/224k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "tokenizer --> ready\n",
+ "Working with z of shape (1, 256, 32, 32) = 262144 dimensions.\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7750b01ce24c40bbb606f872eab4a4ea",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/346M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "vae --> ready\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "0df944025b8948d894549176e594622e",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/748k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "88ea8ec868874f088dabd392fbcc6d60",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/349 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "08b3246c2b7e40b9bb61f4878ae190af",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/1.71G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "f46eb80be43949c6b82454d2fd18f042",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/23.0G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Kandinsky is large 12 billion params model from the family GPT3-like, that uses Russian language and text+image multi-modality.\n"
+ ]
+ }
+ ],
+ "source": [
+ "device = 'cuda'\n",
+ "tokenizer = get_tokenizer()\n",
+ "vae = get_vae(dwt=False).to(device)\n",
+ "vae.eval();\n",
+ "\n",
+ "clip, processor = ruclip.load('ruclip-vit-large-patch14-336', device=device)\n",
+ "clip_predictor = ruclip.Predictor(clip, processor, device, bs=4)\n",
+ "\n",
+ "dalle = get_rudalle_model('Kandinsky', fp16=False, device=device, use_auth_token=KANDINSKY_TOKEN)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "adf9d4eb",
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQcAAAD8CAYAAAB6iWHJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4hElEQVR4nO2dd3hUVfrHPyczEAg1hBA6BBKKgBQRUVd37V1cK6hIFRBE2lLs4qqrEBRdF5UFlbUgKvayLIK76o8O0pNAIIQktJAEEggpM3N+f8ydyb0zEyC9vZ/nycPcMzeZk7vmu+c93/d9j9JaIwiC4EtQZU9AEISqiYiDIAgBEXEQBCEgIg6CIARExEEQhICIOAiCEJAKFwel1I1KqXilVIJSalZFf74gCOeHqsg8B6WUDdgDXAekABuBIVrr3RU2CUEQzouKXjkMABK01vu11vnAJ8CgCp6DIAjngb2CP68NkGy6TgEuMd+glBoDjAFQwXUvauRohHa6Km6GglDLyCbzuNY63He8osXhnGitFwILAfr1DtbpU/9Ct8f24MrOruSZCULN5Cf9eVKg8YoOK1KBdqbrtsZYQIJQxF3/NvF/70JQo0blPjlBEAqpaHHYCEQrpSKVUnWBwcA3Z/uGYFWH2OtEIAShoqlQcdBaO4BHgRVALPCp1nrXub7PIxBxb4hACEJFUeF5DlrrH7TWXbTWnbXWL57v9wWrOsRdLwIhCBVFtcqQ9AiEhBiCUP5UK3EA2YMQhIqi2okDyB6EIFQE1VIcQEIMQShvqq04gIQYglCeVGtxAAkxBKG8qPbiAGJzCkJ5UCPEAWQPQhDKmhojDmDdg7A1blzZ0xGEak2NEgcw70FEi0AIQimoceIAVoGQEEMQSkaNFAcQm1MQSkuNFQew2pwSYghC8ajR4gCFLkbs6xJiCEJxqPHiAGJzCkJJqBXiALIHIQjFpdaIA0iqtSAUh1olDiAhhiCcL7VOHEBWEIJwPtRKcfDQq1Mqca92E4EQhADUWnFwak3GGx1QZ4KImycCIQi+1FpxALDnuug6awcqL0hWEILgQ60WBwBXTg5dZ+5wryBEIATBS60WBx2kAEMgZhkCESMCIQhQi8UhWNkZMHsjB164FBUc7BWI9t8pDo3sJQIh1HpqrTi40GQ56vHfh+aS8GJfr0DU+24jZ1ppCTGEWk+tFYcC7WTn3Au5bNUkfr03xisQaE3n57d59yCkmlOordRacQCok+Oi+6S9XL7aEIgX+llCDJUbRGxMV1lBCLWSWi0OAM6sLLpO3OMWiPvmWgViplsgJMQQaiMlFgelVDul1M9Kqd1KqV1KqUnGeDOl1Eql1F7j31BjXCml3lBKJSiltiul+pXVL1FaXNnZXoFYfd9czlzf2z1udjEkUUqoZZRm5eAApmmtLwAGAhOUUhcAs4BVWutoYJVxDXATEG18jQHeKsVnl5pgZaf9U/GkPH4Zqk5dr0Dc8+R0ku92cPC5yywhRuufbBwZKi6GUHsosThorQ9rrbcYr7OBWKANMAhYYty2BLjDeD0I+Jd2sw5oqpRqVdLPLy0uNG3rnWDFI3M48PRFXoFo+uE6yKrD6pFzLCFGw0/XkdNaXAyh9lAmew5KqY5AX2A9EKG1Pmy8dQSIMF63AZJN35ZijPn+rDFKqU1KqU1p6c6ymF5ACrST/75yGdesHc9Pw+eS+IxbINCark/sLtyD8LgYQKeXtkkmpVBrKLU4KKUaAsuByVrrLPN7WmsN6OL8PK31Qq11f611//AwW2mnd1bqZjvpPC6Za9aOZ9WwuZYVhHeT0mRzml0MEQihplMqcVBK1cEtDB9prb8who96wgXj32PGeCrQzvTtbY2xSsWZmekViJ+GWwWi22N7C/MgfF0M2aQUajilcSsUsBiI1Vq/anrrG2CY8XoY8LVp/CHDtRgInDSFH5WKWSD+M3wuude53QpnVhbdHiu0ObPu6AsgKwihVqDcK/8SfKNSfwB+BXYALmP4Cdz7Dp8C7YEk4F6tdYYhJm8CNwI5wAit9aazfUb/3vX0hhXtznZLiXFqF7ftuZVDX3ak5YINaIcDW2goRwZ3I7Ofg4Z76tBm/iZ0QT5BjRpxbEhPMvo5qZ9ip/3czei8PIJCQki/pzfOYGixdCeu7OxymasglCc/6c83a637+46Xxq34TWuttNYXaq37GF8/aK3TtdbXaK2jtdbXaq0zjPu11nqC1rqz1rrXuYShvHGhuTY8ji+nzSF5+gCU3Y4zM5Pwt9eBC36caHUxmi9cS1BOEKvGWF2M0CVryWmliJsnqdZCzaLWZkgWaCefvnw9d28fyXfj3AJBkA20pvusBK5d94hlDwKg63O7/TIpATrO3YrKCyJ2nqRaCzWHWisOAPUynUSMPuEViJSZl0CQDWdmJp3GpvgJxDlTrcXmFGoQtVocAJxHjxEx+gR3bRvlFQhPiNFpbEpAF6PrxD1uF+O+uf42p1RzCjWEWi8O4BaIlg9ncvf2kXwzbg551/Rxj/vYnKduN9yK7GxLNWfGYHeZiFRzCjWJErsVFUF5uhUF2skV2+7DsTycsPc2gMuJLTyc5BHRnOrooOlOOy3eXu8eDw0lZWR3TkU6abTPRqs3C12MQyN7kR3lJCTFRtv5hS7GsaG9UU4IXyYuhlC1KXO3oiYwrtMvfPxMDEcfNfYa0tJoPXctKsTJFzOtIUareWtAwfdTrC5Gy9fXYDsdxMoJcywhRvN31nImXMkehFBtqbXiUKCdLHj5LsbuuZ9Pp831CgRa021msr+LAXR7ao/fHgRA1Is7/RrGALR/fas7UUoyKYVqSK0VB4CQNAchIxx+AuHZpAzkYnQel+znYlhSraVhjFBDqNXiAOBISSVkhIMx8Q8EFIhzuRieak7fVOuiXAwRCKG6UOvFAdwC0WBEPmP33M/SqTE4ruoDFLoYHoHIudXtSphdjFXD5nLiXsOt8KnmTBvu72KIQAjVhVrtVvReO4ymnzek0bL1oDX2Nq3ZN7YDBY01Yb8rQj8wXIyIFiSOiyI/1EXoLkXY4g1eF+PA+O7kNXfROCGIiIVuF8PWuDEHx/fkTISLhgeDaLWg0MU49HAf6pzShH8qLoZQNRC3wocgFC/1/oq3X55P+uiBoBSO1EN0eHYdqkUuHz4fYwkx2s9egyvEyWdPzbWEGO1eXAMavp05xxJitHl5DXWyFf+eYnUxWr6+hvym4mIIVZ9aKw552sELrwzluYO3seiJQoFAa7pOP+bvYgDdn07yhhhmF6PrX+P9GsYARM7d6dcwBqDNW1slxBCqPLVWHAAaHnaQNyyE55Nv5d0nX7OsIIpyMTyZlL6blEU1jPGmWkvDGKGaUavFAcCRmETesBCeO3ibVSDO08Uwl3ubBcITYrhtzrPUYsgKQqii1HpxAKtAvPPE6zj/6K6hcKSk0mBkgdfFyLvJcCt8VhBZd7n3csx5EKuGzSV96EUAXoHwhBhHxhrjIhBCFabWuhU5rnxuHjuB4O83esfskR2Im9iKIIciYoOLBss3eF2M+MkdAAj/XdP4k41eFyNhSmdcdk2znYpmH270dpTaN60bzvqapnGK5u9v9tZiHJjai/wmhruxuNDFSJ7Yh3rHxcUQKh5xK84DR2ISUdPWY488xYKY1y17EJ2nr8XZPJ8lf5tnCTEiZ63FFaxZNnuuJcTo+NRagvIVXz1tDTHaz15DveNB/DDL6mK0eWUNznrSUUqoOog4+KI1nWZk+bsYwAVPHwnoYnR7ITFgLUbUnDhviGF2MTq8GbgWo+V70lFKqDqIOATAswfh52KkpBIyvKDIWozzbRjj11HKvEkpHaWEKoKIQxGYNykXPTGf9FHFszmLcjGKdXCO2JxCJSLicBbMK4hFT84n/3q3y+CxOT0CkXOH4Vb4VHNmDrnYPe5TzXlstNnFKOwolfqYycWQak6hkhG3wuRWFIU9sgO7Z0ZQJ9NGy/VO6n+90e1itG1D7Ky22E4F0WKzi4bLN3ldjPjHO6EKFOFbNE0+2+R1MfY80Q1t0zTfqghdWuhi7Hu8J44GmrBtirCPtnhdjKSpfQg5qgn/RFwMoXwQt6IUOBKT6DJuA672ubw5/43CECMllehH1+No6uS9mFc5MrEwxIiavA6Aj1+OsYYY09dS92QQy1+whhiRT6yl4cEgvnnOugfR7oU14EJWEEKFI+JQDLo+leHeg3jSx8V4IZWxe+7ns6lWF6NLzL6ALkbkG7EBO0q1/WdgFyN86TZJtRYqHBGHYnBWF6OYDWMCbVK6G8bsLbphjOxBCBWIiEMx8XMxTALhaRgTyMXwreYsquWcxeYsysUQgRAqABGHEuC7gsi9xe1K+Nqc2fcaboWPzZk+YoB73CcP4sgj7j0h32rO5Kk+LoaEGEIFIOJQQjwCccf/xnP4Mht5N11sCTFuWDmJtL6KM4MGWEKMq3+cSmYPzem7rCHGlV9NIyvKyal7B1qqOa9YNp2cdg6y7h9oWUEEH7Fz9IGeIhBCuVFqcVBK2ZRSvyulvjOuI5VS65VSCUqpZUqpusZ4sHGdYLzfsbSfXdk4EpOIHraFghYFzF/wpiXE6DJ6E666mkVvvGYJMbqM24D9tOKDV+dZQozox9YTkmpjWUyMxcXoPH0tTXfa+eJlaz+IDs+sJThLywpCKDfKYuUwCYg1Xb8CvKa1jgIygVHG+Cgg0xh/zbivRnDBi2l+m5QA3WIOekMMj80J0PnNfX6blADtFwZ2MVp+sMNvkxKg6VfbZQ9CKDdKJQ5KqbbALcAi41oBVwOfG7csAe4wXg8yrjHev8a4v9pTZMMYYw9iTPwDFpsz0CbluRrGWDpKBWp7L9WcQhlT2pXDfGAG4DKuw4ATWmuHcZ0CtDFetwGSAYz3Txr3W1BKjVFKbVJKbUpLd5ZyehXHWV2MkYGLtXxrMXxdDHM1p+/hvZaWc7N2SDWnUOaUWByUUrcCx7TWm8twPmitF2qt+2ut+4eH2cryR5c7vi7G6TvdroRvNeeJBwy3wicPIm1MYBcjdZJRu+FTzZk0M4CLISGGUEaUZuVwOXC7UuoA8AnucOJ1oKlSym7c0xZINV6nAu0AjPebAOml+PwqiUcg7l43hqMXB+G45iJLiHHTr4+S3keTf0N/ywri6lWTOdHDRd4tF1tCjCt+mMqpKAdnBg2wVnN++RdyO+STc+cllhVEneN2Dg/vJQIhlJoSi4PW+nGtdVutdUdgMLBaa/0A8DNwt3HbMOBr4/U3xjXG+6t1Va76KgWOxCQih+zA2cDFvEULLCFG1NCtBOUpFrzzhtXFGLWZ+odsLF7wmiXE6DJuA0122fnw769aQozoSesI/7UOS+fPs4QYkY+vpVGKk7gYWUEIpaM88hxmAlOVUgm49xQWG+OLgTBjfCowqxw+u+qgNd1fPeLvYmhN9D+SGL93iN/p3h3eTeBen7b3AK0/jOW6AC5G2PKdXLnaengvQMMV7j0ICTGE0lAm4qC1/q/W+lbj9X6t9QCtdZTW+h6tdZ4xnmtcRxnv7y+Lz67KnNXFGF7grcUwV3MWt+19kR2lTIf3ioshlATJkCxninQxUg95XYxANmdRLobvyVq+DWP8XIzcIGJjxMUQio+IQwXg62Jk33uJe9yno1TGsMAuxrHx7vt9VxAp0wpdDHM154EnTad7S0cpoYSIOFQQHoF4cOsIjg0AfXkfSy3G7evHkX6RC9cf+1pWENf+OpETFxbgvKqfZQVxxcrJ5HTPpeBaazXnZd9NxRl1hvwbL7asIOyZdlLH9CKoQYPKfhRCNUHEoQJxJCbR6s49qALF3z5caHExOgzeTb0jNuYvWWAJMaKGbqXx7joseP/vln4QXUZvptkvwSxe/LolxOgyYSPh39Tj3Xdes+xBdJq5jrBdBcTN6yErCOG8EHGoaFxOurxziBeTb7G6GC4nke8d4NG9g/1cjDYf7WXwNmtXa7SmxRdx3LjOx8XQmibf7+Jq345SWlPvl12ofCUhhnBeiDhUAudTi2FxMdLSaDkqo9iH957LxRCBEM6GiEMlcbbTvT0dpT6b6iMQ5yjW8nUxpKOUUBpEHCoRX4HIGmK4GD7VnOmjCl0Ms0AcfrSwFsO8gkieXthRqttje73VnPuf7QdK+XWUkjwIIRAiDpWMRyBG7xrK0cs16qIelmrOu7Y8TPolBTCgl8XFuGHteE71P4O+tLfFxbjy58dw9c3G9Yc+Xhej+6S9XPbDVBr2zMB1ZR/LCsKWbSNpQk9xMQQ/RByqAI7EJJoNSiT4mI3nPvuXJcRoc88eGsXW5ZVliywuRqcHd9P0l3q8tvRtUmZeUthRasQ2mn7ZgDc+XGBpWttl/GYaLm7C/CULLIlSnadvpNXaXOJixMUQrIg4VBG0w0GnJSnMSbnRsgehHQ7afXKAyXvvs7gY2uEg4ssEhm4fbq3FcDkJ/TGeO9aPs7oYLicNVsdy68+PWjtKuZzUWbcbVaAk1VqwIOJQhXAcOHjOVGtLwxhjk/JsDWN8D+8N2DAmN7cw1VoaxggGIg5VjHMdnBOoo5T58F5ziNFpbMrZz8UwVXNKwxjBFxGHKoivi3HiwYHucaOjlCcPwts5yqcW4/CUwloMc0epg7P6u90Kn2rOfbNNLoZUcwoGIg5VFI9AjI+7n2NXFWDr0dUSYgzeNpLsK88QdGE3i4tx84ZH0H84gerbwxJi/PGXiTS+9Bjqoh4ou73Q5lwxhY4Xp8AlvSwuRtApG4mTxcWozYg4VGEciUk0HJRKw9i6zPp2mSXEaHHPARr9Wp/ZX39gCTE63B9PyBdNeP6L931cjF3UWRTG85+9x4FnLi4MMR75HcecCGZ//J4lxIievol2P50m/hU5OKe2IuJQxdF5ebT/LIX5KddZXYy8PFp9lciMvfdYXYyCfMJ+3MO4HQ9aXAxdkE+j1XEM3TDKsgehHQ7q/RbLkP+NsbgY2uHAtiUeXMgeRC1FxKEaYHYxLJuUh49YDu/1plofTw+can3iZMDTvV2nTxfWYphTrU0uhghE7UPEoZpwrmKt8+koZa7FCGRzmlOtxcUQRByqEb4CkTnM5GKYqjmPjTPcCh8XI3VK4HMxkp5wuxjujlImF+N5d4MZqeasnYg4VDM8AjEl4V5O3HgaW3QnSzXngzuHww0Z2LpGuf/gjRXEbZvHEnbdIWwXdLG4GH/67VGir95PUK+uXhej68Q9XLZyMpdcEYvq2829svAIRI6N/TN7EhQSUtmPQihnRByqIY7EJOrefpwGvzVk8o/fWkKMsHtSsX8VyrQfvuToxEu9IUa7+/dR8M8Ipn273OJiRI2IJWtOO6Z8sdzrYriys+k6bjtHnuzExGXLSXjpIm+I0WXaJiK/PsWely6UPIgajohDNcWVk0Prb5N5+9Cf3KnWowZ6E5la/DuRF/bfanExXLm5NPk5gem77naHGDMMdyMvj5Bf45m4eYjVxSjIp86GeCb+9oAlk1I7HLB9D9qmJdW6hiPiUI1xJCV7U60XPTnf4mKYz+b0blKaXIxvHzGlWmdlBd6kPH064LkYOi9PNilrASIO1ZwiazGMg3P8bE6fhjHmprXmTUrfjlJeF0NaztUaRBxqAL4uRsZww8Xw6SjlPf/CVyCmDXBvXvp0lDrwlPuwX09PSo9A7PtrP/fmpQhEjUbEoYbgEYgZ++/CdWc69g7tLB2lRsQOpfmfk7FHdrC4GIN+f5gLbovHFhVpcTGu/r8J/PGm37F162yqxdjDZT9N5s7r1qJ6RFtdjDNBJDwlLkZNQsShBuFITCLojmzU12EMW/mLpRaj8T1pnFrUhpErfra4GG3uT+JITGdGff8TqTMKQ4zOI+LZ83QPHvpypdXFeGQHWx7ry92f/EzC3/qZXIzf6fxZNntn9xYXo4ZQKnFQSjVVSn2ulIpTSsUqpS5VSjVTSq1USu01/g017lVKqTeUUglKqe1KqX5l8ysIZpxZWUSsSOaTIwOsLkZ2NqGr9/Nm0lVWFyMnh4b/28uLcTfx7SOFDWNcubnUWxPPs1tvs7oYeXnYN8fzwrpbLJmUuiAfduzFFeySszlrCKVdObwO/Ftr3Q3oDcQCs4BVWutoYJVxDXATEG18jQHeKuVnC0XgSE4J6GI4jx4L3DAmM9OSau1xMVzZ2YFdjJycwo5SZpszL09qMWoQJRYHpVQT4EpgMYDWOl9rfQIYBCwxblsC3GG8HgT8S7tZBzRVSrUq6ecLZ+esHaUC2Zw+qdbncjH8OkqJi1HjKM3KIRJIA95TSv2ulFqklGoARGitDxv3HAEijNdtgGTT96cYY0I54VesNdLqYngFYkLJXQzLwTkv+LgYsoKo1pRGHOxAP+AtrXVf4DSFIQQAWmsN6OL8UKXUGKXUJqXUprR0ZymmJ0ChQDxx4M80f+Ag9lYtLT0pR8c9SM8hu7G3a2txMe7cOppr793gdjfMLsaa8Tz459XYoiNNNqe7mnPSzT+4XQyPQBiJUntm9xAXoxpSGnFIAVK01uuN689xi8VRT7hg/HvMeD8VaGf6/rbGmAWt9UKtdX+tdf/wMFsppid4cCQm4fpzLpnvt+e2VTu8m5SOlFQa3pdB4mtduW3F7xYXo+WDqfz+bD9u/m6z1cUYtY/VUy/n2uVbSHpugDfE6PbILr4ZexWXf/A7CX+7uNDFmL6V6I9Pse/p3rKCqGaUWBy01keAZKVUV2PoGmA38A0wzBgbBnxtvP4GeMhwLQYCJ03hh1DOODMzab4qif8cv4B3n3rNKxDOEydp8t/9LEvtb8mkdGVn0+C3eBYnXOZ1MZTdjuv0aYLXxvH2zj9YNylzc7FvimPx5sv9Uq3ZtgdHiJYQo5pRWrdiIvCRUmo70Ad4CXgZuE4ptRe41rgG+AHYDyQA/wTGl/KzhWLiSD1UeC6G2cVISwvcMObEyYDnYrhOnybqkQAdpXJz3Ufv+TSM0QX5dH18u/dsThGI6kGpxEFrvdUIAS7UWt+htc7UWqdrra/RWkdrra/VWmcY92qt9QStdWetdS+t9aay+RWE4nCuczE8DWPO5mKY9yACuRjmhjFyunf1RTIkayFmF8ObKAXehjEWm9O0SentKDXDKhDePIin+lsaxlhcDHOqtQhEtUDEoZbiEYhnDg6i1+id2CJaWKo5x8Q/wHXD12Jv09rPxRj24ArsHdp6bU5PHsT0e78gyORieKo5Xxn0EapHVGHLOcPFiH/xAjkXowoj4lCLcSQm4birgLg3enDZyoOFLkbqIULuO8naFwcw4PtEi4vRathhvpt1DX2/3E/qzEsLE6VGJ/LRpFvp/uE+kp69pLBp7YRY3n74LiL/uZ/9Lw8oDDFmbCP64zMkzhAXo6oi4lDLcR5Pp9nqRLacaGfdpMzMpPF/9/Lz0S7WPYgTJ2nwSxzfJ/Ww1mJkZxP8226+3duTn0bMsaRa29bt5scdPfll8FzL4b1q024KmrgkxKiiiDgIOI4cDbhJ6UzPCHwuRlYWrcZk+KVau3JyAroYOi+PbpPi/TtKORx0eWK7nM1ZRRFxEIBzn4vhaRhjORdjVIb/wTk+LkbiM+ffUSp2XlcRiCqEiIPg5awuxsgCfxcjLc1azfmXAX4uxqphxgrCcDG81ZyBXAxDICTEqBqIOAgWCgXidq6f8H9uFwO81Zxj4h9g+NgfLC6GJw9ixvBPsXVqb3Exrl4znjlDlhDUtbP34BzPCmLRne9An67+B+e80l1cjCqAiIPghyMxiYL74Oe5l9Hpu5Okj760MMS4P5vPn72Btl9kWGsxhh1j8fQ7ifjwOKkzCl2MqDEHePWxB2i8MI2Dz15a6GI8Gsdfx4ygbkwa+1+yuhhRSws4OEk6SlU2Ig5CQBxHjhK6ch8pOU2tLsbxdBr/FEdsZku/hjEhq3ex5Uhbvh1f6GI4s7Ko//MONie1Z+XIOZa293V+2cGOvW355X6rixH0f9vJbS4dpSobEQehSJxpaRQMr+fvYpw4SaNR+X6p1q7Tp2kzNt3fxcjNJXpCkr+LUZBPtyn+LgYuJ12e2i6ZlJWMiINwVvxcDFO5t1+qdYBzMYpyMXzPxfBuUkotRpVBxEE4JxYX48n51kxK356UplTrolwMi0B42977V3OaU62lmrPiEXEQzgtzNeeDU37EbnYxDIGYPmEZ9vZtASwuRszoxe7OUWARiMUP/gN6dfW6GJ6Dcz6/ez7Oi7t7z/70riDmiotRkSh3J7eqSf/e9fSGFe3OfWMJyHHlc/PYCQR/v7Fcfn5Nxd6mNcev7kCbhxM4uCSKsHfXgdbYIlpw4qpONH/kAMmfdaLFgvXgcmILa0bWn6JpMD6VQ/9uT+t5xnjTJpz6U1eCxh/j2K+taf/yJnRBPkGNGnHmym7kTsgkY2s4nWZvQeflERQSQt5l3UnrG0zbt3fgys6u7EdRY/hJf75Za93fd1xWDkKxcKQeIuyHeBzaxrtPv2Zpe9/k+11knAlh2XRTqnV6Bo2+38ahrMZ886ipq/WJk4R8v5WUtFD+8/Acyx5E8I9bOJoSyv8etPaDqLNqC2daSEepikLEQSg2zvQMnMOD/VKtXdnZNBmd55dq7crNpd24436blLogny6PHvBLtcblpPtf4v1SrdGa6Ge3yR5EBSHiIJSIgKnWprM5i3IxfFvOBUy19u0o5btJOWsHKk9cjPJGxEEoMZaWc0+d4+Acn1Rr35Zzfgfn+HaU8m05N1MOzilvRByEUmFeQUz5y6fumguwVHO+/Nhi9yneWA/OWfjwmwT1jHaPm1yMTx96DdfFPQAs1Zw/3DOP/Ct6usfNtRgxIhDlgbgV4laUCfa2bTh2XXuC7ztK3qcRNHvP7WLYW0Zw/PpOqMFp5H3fghZvGW5F8zAyr48mf0gGBf9tTqvXCl2MEzd059SQkzg2htJ+TqGLkX3DBaTfl4MrviGRfy10MXKu6cmJTnZavysuRkkQt0IoVxwpqYR/uZvGwbksfsYUYhw5SrPPt6GUZtkM0x7E8XSaLP+d3Pw6fP2Y1cVovHwTp7Lq85+xVhejwfIN5B6vz38fsoYY9b7byJlW4mKUNSIOQpnhPHESNbKOv4uRk0Oz0We8tRgem1Pn5dFhfJq/i+Fw0G1Sor+LoTXdZsQGdDE6P79NOkqVMSIOQpni52KYOkp5XAy/jlLFcDECNozxqcWQas6yQcRBKHPOdXBOIJvzvF0Mw+a0uBi+tRhSrFUmiDgI5YJ5BfHMjCXYO7Z3j5s6Sv1j8pvYukcBWHpSLh37KuqiC9zjJhfj+2FzKbiiF4DF5lx931zOXN/bPW52MSRRqlSIWyFuRblib9eWw7e0I++6LEK+a0yz9w0Xo1VLjt4ayenrT1F/dUPC39ngdivCw0m7LYqT15+m/vqGtHzdcDFCQzl+ezcyrs8leGd92sUUuhgZd/Qk7do8ghPr0eFvm70uRtatF5LTPIiWH4iLcTbErRAqBUdyChEfbKdt05MsftYUYhw+QvgHv9Owfh6fzIopDDHS0gj710aUgq8mm1yMzExCP9iAM8/GikesLkbTD9dBVh1Wj5xjCTEafrqOnNbiYpQUEQeh3HGdPo19tM3fxcjNpcW40/4uhsNB58eO+LkYuJx0n7YvoIvR9Ynd/h2lgE4vbZNMyhJSKnFQSk1RSu1SSu1USi1VStVTSkUqpdYrpRKUUsuUUnWNe4ON6wTj/Y5l8hsI1YIiz8UwdZT6bKqpmvM8Okr5uhjSUapsKbE4KKXaAI8B/bXWPQEbMBh4BXhNax0FZAKjjG8ZBWQa468Z9wm1iBIdnFPMlnPSUarsKG1YYQfqK6XsQAhwGLga+Nx4fwlwh/F6kHGN8f41SilVys8XqhlmgYiZ9Q62bm63wrOCGBP/AIunzEf17QZYXYwvx83FebnbrTALxH+GzyX3OrdbYanmvG8uWXf0BZAVRAkolVuhlJoEvAicAf4DTALWGasDlFLtgB+11j2VUjuBG7XWKcZ7+4BLtNbHfX7mGGAMQPs29osSN3Us8fzOhrgVlYu9QztS7mzHqX5nCPupHqH/MlyMNq1JvasjWRflEvp/wTRfVOhiHL4vmhP98mmytS4tF2xAOxzYQkM5Mrgbmf0cNNxThzbzC12MY0N6ktHPSf0UO+3nFroY6ff0xhkMLZbuFBeDcnArlFKhuFcDkUBroAFwY4lnaKC1Xqi17q+17h8eZivtjxOqKI6kZFq/tYV2EZksmm0NMVq+tYlGTc6w9Emri9FiwXpswU6+nGYNMcLfXgcu+HGi1cVovnAtQTlBrBpjdTFCl6wlp5Uibp6kWp+N0oQV1wKJWus0rXUB8AVwOdDUCDMA2gKpxutUoB2A8X4TIL0Uny9Uc1y5uTQYq/1SrXVBPm0fzfLLpMTlpMvUVL9Ua7Sm+6wErl33iGUPAqDrc7v9MikBOs7disqTsznPRmnE4SAwUCkVYuwdXAPsBn4G7jbuGQZ8bbz+xrjGeH+1rsoZWEKFUNJUa2/be59Ua1+BOGeqtdicRVJicdBar8e9sbgF2GH8rIXATGCqUioBCAMWG9+yGAgzxqcCs0oxb6EGcTab05Nqbc6DCFSL4QkxAtVimBvG+HWUmrVDqjmLoFRuhdb6Wa11N611T631UK11ntZ6v9Z6gNY6Smt9j9Y6z7g317iOMt7fXza/glATMAvE64//g6De3d3jpmrOD6a8ir7UcCtM1ZzfjJtD3jV93OM+Nuep2w23wqeaM2NwP/e4VHMWidRWiFtRpbB3bM+B+9uS095BxG9BNPlovdfFSBrakdMdHYRttBH2XqGLkTwimlMdHTTdaafF24W1GCkju3Mq0kmjfTZavVnoYhwa2YvsKCchKTbazi90MY4N7Y1yQviy2uViSG2FUC1wHDhIu7mbaNkhnYUvWPtBtJmznnphZ/j4GauL0XruWlSIky9mWkOMVvPWgILvp1hdjJavr8F2OoiVE+ZYQozm76zlTLiSPQgDEQehyqEL8mk23uHnYuBy0mlKhr+LoTXdZib7uxhAt6f2+O1BAES9uNOvYQxA+9e3uhOlJJNSxEGompSli+HpKFVkqrU0jAmIiINQZTmri2HUYpyro1QgF8NTzembal2Ui1FbBULEQajSmAViwRNvoAde6B43VXMunRqD46o+AH7FWjm3ul0J32rOE/caboVPNWfacH8Xo7YKhLgV4lZUC+yRHUgY3RpHA03EOmi0rNDF2De2AwWNNWG/K0I/MFyMiBYkjosiP9RF6C5F2OINXhfjwPju5DV30TghiIiFbhfD1rgxB8f35EyEi4YHg2i1oNDFOPRwH+qc0oR/WjNdDHErhGqNIzGJjk9voHHkCd5+2epidHh2HapFLh8+H2MJMdrPXoMrxMlnT821hBjtXlwDGr6dOccSYrR5eQ11shX/nmJ1MVq+vob8prXPxRBxEKoPLietJ5/xdzG0puv0Y/4uBtD96SRLPwjPeNe/xvs1jAGInLvTr2EMQJu3tta6EEPEQahWFOliGA1jznW6t3kFUVTDGG+qdS1vGCPiIFQ7SutiFNVRyhNiuG3Os9Ri1JIVhIiDUC0xC8Q7T7yO84/uGgpHSqq3FmPp1BjybjLcCp8VRNZd7v0335O10odeBOAVCE+IcWSsMV6LBELcCnErqjX2yA7ETWxFkEMRscFFg+UbvC5G/OQOAIT/rmn8yUavi5EwpTMuu6bZTkWzDzd6O0rtm9YNZ31N0zhF8/c3e2sxDkztRX4Tw91YXOhiJE/sQ73j1d/FELdCqJE4EpOImrYee+QpFsS8btmD6Dx9Lc7m+Sz52zxLiBE5ay2uYM2y2XMtIUbHp9YSlK/46mlriNF+9hrqHQ/ih1lWF6PNK2tw1qu5HaVEHITqj9Z0mpHl72IAFzx9JKCL0e2FxIC1GFFz4vwO7wXo8GbgWoyW79XcjlIiDkKN4Ky1GMMLzuvw3rM1jPHrKGXepKyhHaVEHIQag3mTctET80kfVTyb83zOxTjnwTk1yOYUcRBqFOYVxKIn55N/vdtl8K3mzLnDcCt8qjkzh1zsHvep5jw22uxiFHaUSn3M5GLUsGpOcSvEraiR2CM7sHtmBHUybbRc76T+1xvdLkbbNsTOaovtVBAtNrtouHyT18WIf7wTqkARvkXT5LNNXhdjzxPd0DZN862K0KWFLsa+x3viaKAJ26YI+2iL18VImtqHkKOa8E+qh4shboVQq3AkJtFl3AZc7XN5c/4bhSFGSirRj67H0dTJezGvWprWRk1eB8DHL8dYQ4zpa6l7MojlL1hDjMgn1tLwYBDfPGfdg2j3whpwUe1XECIOQo2m61MZ7j2IJ31cjBdSvYf3ml2MLjH7AroYkW/EBuwo1fafgV2M8KXbqn2qtYiDUKM5V0ep4jSMCbRJ6W4Ys7fohjHVeA9CxEGo8fi5GCaB8DSMCeRi+FZzFtVyzmJzFuViVEOBEHEQagW+K4jcW9yuhK/NmX2v4Vb42JzpIwa4x33yII484t7H863mTJ7q42JUwxBDxEGoNXgE4o7/jefwZTbybrrYEmLcsHISaX0VZwYNsIQYV/84lcwemtN3WUOMK7+aRlaUk1P3DrRUc16xbDo57Rxk3T/QsoIIPmLn6AM9q41AiDgItQpHYhLRw7ZQ0KKA+QvetIQYXUZvwlVXs+iN1ywhRpdxG7CfVnzw6jxLiBH92HpCUm0si4mxuBidp6+l6U47X7xs7QfR4Zm1BGfparOCEHEQaiUXvJjmt0kJ0C3moDfE8NicAJ3f3Oe3SQnQfmFgF6PlBzv8NikBmn61vdrsQYg4CLWSIhvGGHsQY+IfsNicgTYpz9UwxtJRKlDb+ypezSniINRazupijAxcrOVbi+HrYpirOX0P77W0nJu1o8pXc55THJRS7yqljimldprGmimlViql9hr/hhrjSin1hlIqQSm1XSnVz/Q9w4z79yqlhpXPryMIxcPXxTh9p9uV8K3mPPGA4Vb45EGkjQnsYqROMmo3fKo5k2YGcDGqaIhxPiuH94EbfcZmAau01tHAKuMa4CYg2vgaA7wFbjEBngUuAQYAz3oERRAqG49A3L1uDEcvDsJxzUWWEOOmXx8lvY8m/4b+lhXE1asmc6KHi7xbLraEGFf8MJVTUQ7ODBpgreb88i/kdsgn585LLCuIOsftHB7eq8oJxDnFQWv9C5DhMzwIWGK8XgLcYRr/l3azDmiqlGoF3ACs1FpnaK0zgZX4C44gVBqOxCQih+zA2cDFvEULLCFG1NCtBOUpFrzzhtXFGLWZ+odsLF7wmiXE6DJuA0122fnw769aQozoSesI/7UOS+fPs4QYkY+vpVGKk7iYqrWCKOmeQ4TW+rDx+ggQYbxuAySb7ksxxooa90MpNUYptUkptSkt3VnC6QlCCdCa7q8e8XcxtCb6H0mM3zvE73TvDu8mcK9P23uA1h/Gcl0AFyNs+U6uXG09vBeg4Qr3HkRVCjFKvSGp3TXfZVb3rbVeqLXur7XuHx5mK6sfKwjnxVldjOEF3loMczVncdveF9lRynR4b1VwMUoqDkeNcAHj32PGeCpgbsDQ1hgralwQqhxFuhiph7wuRiCbsygXw/dkLd+GMX4uRm4QsTGV72KUVBy+ATyOwzDga9P4Q4ZrMRA4aYQfK4DrlVKhxkbk9caYIFRJfF2M7HsvcY/7dJTKGBbYxTg23n2/7woiZVqhi2Gu5jzwpOl07yrSUep8rMylwFqgq1IqRSk1CngZuE4ptRe41rgG+AHYDyQA/wTGA2itM4C/AhuNr+eNMUGosngE4sGtIzg2APTlfSy1GLevH0f6RS5cf+xrWUFc++tETlxYgPOqfpYVxBUrJ5PTPZeCa63VnJd9NxVn1Bnyb7zYsoKwZ9pJHdOLoAYNKuX3Px+3YojWupXWuo7Wuq3WerHWOl1rfY3WOlprfa3nD91wKSZorTtrrXtprTeZfs67Wuso4+u98vylBKGscCQm0erOPagCxd8+XGhxMToM3k29IzbmL1lgCTGihm6l8e46LHj/75Z+EF1Gb6bZL8EsXvy6JcToMmEj4d/U4913XrPsQXSauY6wXQXEzetRKSsIyZAUhHPhctLlnUO8mHyL1cVwOYl87wCP7h3s52K0+Wgvg7dZu1qjNS2+iOPGdT4uhtY0+X4XV/t2lNKaer/sQuWrSgkxRBwE4Tw4n1oMi4uRlkbLURnFPrz3XC5GRQqEiIMgnCdnO93b01Hqs6k+AnGOYi1fF6MqdZQScRCEYuArEFlDDBfDp5ozfVShi2EWiMOPFtZimFcQydMLO0p1e2yvt5pz/7P9QCm/jlIVkQch4iAIxcQjEKN3DeXo5Rp1UQ9LNeddWx4m/ZICGNDL4mLcsHY8p/qfQV/a2+JiXPnzY7j6ZuP6Qx+vi9F90l4u+2EqDXtm4Lqyj2UFYcu2kTShZ7m7GCIOglACHIlJNBuUSPAxG8999i9LiNHmnj00iq3LK8sWWVyMTg/upukv9Xht6dukzLyksKPUiG00/bIBb3y4wNK0tsv4zTRc3IT5SxZYEqU6T99Iq7W5xMWUr4sh4iAIJUQ7HHRaksKclBstexDa4aDdJweYvPc+i4uhHQ4ivkxg6Pbh1loMl5PQH+O5Y/04q4vhctJgdSy3/vyotaOUy0mddbtRBapcU61FHAShFDgOHDxnqrWlYYyxSXm2hjG+h/cGbBiTm1uYal1ODWNEHAShlJzr4JxAHaXMh/eaQ4xOY1POfi6GqZqzvBvGiDgIQhng62KceHCge9zoKOXJg/B2jvKpxTg8pbAWw9xR6uCs/m63wqeac99sk4tRTtWcIg6CUEZ4BGJ83P0cu6oAW4+ulhBj8LaRZF95hqALu1lcjJs3PIL+wwlU3x6WEOOPv0yk8aXHUBf1QNnthTbniil0vDgFLullcTGCTtlInFx2LoaIgyCUIY7EJBoOSqVhbF1mfbvMEmK0uOcAjX6tz+yvP7CEGB3ujyfkiyY8/8X7Pi7GLuosCuP5z97jwDMXF4YYj/yOY04Esz9+zxJiRE/fRLufThP/StkcnCPiIAhljM7Lo/1nKcxPuc7qYuTl0eqrRGbsvcfqYhTkE/bjHsbteNDiYuiCfBqtjmPohlGWPQjtcFDvt1iG/G+MxcXQDge2LfHgokz2IEQcBKEcMLsYlk3Kw0csh/d6U62PpwdOtT5xMuDp3q7TpwtrMcyp1iYXo7QCIeIgCOXEuYq1zqejlLkWI5DNaU61LmsXQ8RBEMoRX4HIHGZyMUzVnMfGGW6Fj4uROiXwuRhJT7hdDHdHKZOL8by7wUxZVHOKOAhCOeMRiCkJ93LixtPYojtZqjkf3DkcbsjA1jXK/QdvrCBu2zyWsOsOYbugi8XF+NNvjxJ99X6CenX1uhhdJ+7hspWTueSKWFTfbu6VhUcgcmzsn9mToJCQYs1bxEEQKgBHYhJ1bz9Og98aMvnHby0hRtg9qdi/CmXaD19ydOKl3hCj3f37KPhnBNO+XW5xMaJGxJI1px1TvljudTFc2dl0HbedI092YuKy5SS8dJE3xOgybRORX59iz0sXFisPQsRBECoIV04Orb9N5u1Df3KnWo8a6E1kavHvRF7Yf6vFxXDl5tLk5wSm77rbHWLMMNyNvDxCfo1n4uYhVhejIJ86G+KZ+NsDlkxK7XDA9j1omy5WqrWIgyBUII6kZG+q9aIn51tcDPPZnN5NSpOL8e0jplTrrKzAm5SnTwc8F0Pn5RV7k1LEQRAqmCJrMYyDc/xsTp+GMeamteZNSt+OUl4Xo4Qt50QcBKES8HUxMoYbLoZPRynv+Re+AjFtgHvz0qej1IGn3If9enpSegRi31/7uTcviyEQyn2aXdWkf+96esOKdue+sQTkuPK5eewEgr/fWC4/XxDOB3tkB1oszeDgqVDs1yWD8fdob9sG9aGLpnXPcPzKU+59A8AW0YKTSxryh4j9bL+0Hq7cXPd4aCjJ77ZiVJc1/OfS9jizsgAIatSIvW9HMbv/N3z0h34409Lc4yEhxM3riQpxkPTQE5u11v1951alxUEplQ3EV/Y8AtAcOF7ZkwiAzOv8qYpzgsqZVwetdbjvoL2CJ1Fc4gMpWmWjlNok8zp/quK8quKcoGrNS/YcBEEIiIiDIAgBqerisLCyJ1AEMq/iURXnVRXnBFVoXlV6Q1IQhMqjqq8cBEGoJEQcBEEISJUVB6XUjUqpeKVUglJqVgV+bjul1M9Kqd1KqV1KqUnGeDOl1Eql1F7j31BjXCml3jDmuV0p1a+c52dTSv2ulPrOuI5USq03Pn+ZUqquMR5sXCcY73csxzk1VUp9rpSKU0rFKqUurQrPSyk1xfjfcKdSaqlSql5lPC+l1LtKqWNKqZ2msWI/H6XUMOP+vUqpYWU1vyLRWle5L8AG7AM6AXWBbcAFFfTZrYB+xutGwB7gAmAOMMsYnwW8Yry+GfgRUMBAYH05z28q8DHwnXH9KTDYeP028IjxejzwtvF6MLCsHOe0BBhtvK4LNK3s5wW0ARKB+qbnNLwynhdwJdAP2GkaK9bzAZoB+41/Q43XoeX631p5/vBSPMxLgRWm68eBxytpLl8D1+HO1GxljLXCnaAF8A4wxHS/975ymEtbYBVwNfCd8R/QccDu+9yAFcClxmu7cZ8qhzk1Mf4Ilc94pT4vQxySjT8mu/G8bqis5wV09BGHYj0fYAjwjmnccl95fFXVsMLzP6yHFGOsQjGWln2B9UCE1vqw8dYRIMJ4XZFznQ/MAFzGdRhwQmvtCPDZ3nkZ75807i9rIoE04D0j3FmklGpAJT8vrXUqEAMcBA7j/v03U/nPy0Nxn0+F/01UVXGodJRSDYHlwGStdZb5Pe2W7gr1gJVStwLHtNabK/JzzwM77iXzW1rrvsBp3MtkL5X0vEKBQbjFqzXQALixIudwvlTG8zkfqqo4pALmcsy2xliFoJSqg1sYPtJaf2EMH1VKtTLebwUcq+C5Xg7crpQ6AHyCO7R4HWiqlPLUyJg/2zsv4/0mQHo5zCsFSNFarzeuP8ctFpX9vK4FErXWaVrrAuAL3M+wsp+Xh+I+nwr/m6iq4rARiDZ2luvi3iD6piI+WCmlgMVArNb6VdNb3wCeHeJhuPciPOMPGbvMA4GTpuVimaG1flxr3VZr3RH381ittX4A+Bm4u4h5eeZ7t3F/mf+/k9b6CJCslOpqDF0D7KaSnxfucGKgUirE+N/UM69KfV4mivt8VgDXK6VCjVXR9cZY+VGeGxql3MC5GbdTsA94sgI/9w+4l3jbga3G1824489VwF7gJ6CZcb8C/mHMcwfQvwLm+CcK3YpOwAYgAfgMCDbG6xnXCcb7ncpxPn2ATcYz+wr3bnqlPy9gNhAH7AQ+AIIr43kBS3HvexTgXmmNKsnzAUYa80sARpT3f2eSPi0IQkCqalghCEIlI+IgCEJARBwEQQiIiIMgCAERcRAEISAiDoIgBETEQRCEgPw/gY25423rTzgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "