From 81601b6169b762a9f9cb8ceff90feaa6bf081935 Mon Sep 17 00:00:00 2001 From: ishii-norimi Date: Sun, 19 Nov 2023 13:06:41 +0000 Subject: [PATCH] deploy: d8d002bf10f30a855cb817405b16ceca54ecd836 --- docs/index.html | 2 +- js/controller.js | 2 +- js/data/manual.js | 2 +- js/renderer/line.js | 2 +- js/renderer/scatter.js | 2 +- js/renderer/util/centroids.js | 2 +- js/renderer/util/figure.js | 1 + js/utils.js | 2 +- js/view/agglomerative.js | 2 +- js/view/dbscan.js | 2 +- js/view/decision_tree.js | 2 +- js/view/gmm.js | 2 +- js/view/mean_shift.js | 2 +- js/view/pca.js | 2 +- js/view/vbgmm.js | 2 +- 15 files changed, 15 insertions(+), 14 deletions(-) create mode 100644 js/renderer/util/figure.js diff --git a/docs/index.html b/docs/index.html index 9530d796..fbad5e9d 100644 --- a/docs/index.html +++ b/docs/index.html @@ -1 +1 @@ -@ai-on-browser/data-analysis-models 0.17.0 | Documentation

@ai-on-browser/data-analysis-models

0.17.0

Default export object.

default
Properties
Tensor (Tensor) : Tensor class
Matrix (Matrix) : Matrix class
Graph (Graph) : Graph class
Complex (Complex) : Complex number
Static Members
models
rl
evaluate

MatrixException

lib/util/matrix.js

Exception for matrix class

new MatrixException(message: string, value: any)

Extends Error

Parameters
message (string) Error message
value (any) Some value

Matrix class

new Matrix(rows: number, cols: number, values: (number | Array<number> | Array<Array<number>>)?)
Parameters
rows (number) Number of rows
cols (number) Number of columns
values ((number | Array<number> | Array<Array<number>>)?) Initial values
Static Members
zeros(rows, cols)
ones(rows, cols)
eye(rows, cols, init)
random(rows, cols, min, max)
randint(rows, cols, min, max)
randn(rows, cols, myu, sigma)
diag(d)
fromArray(arr)
map(mat, cb)
resize(mat, rows, cols, init)
repeat(mat, n, axis)
concat(a, b, axis)
add(a, b)
sub(a, b)
mult(a, b)
div(a, b)
mod(a, b)
and(a, b)
or(a, b)
bitand(a, b)
bitor(a, b)
bitxor(a, b)
Instance Members
dimension
sizes
length
rows
cols
value
t
iterator()
toArray()
toScaler()
toString()
copy(dst?)
equals(other, tol)
at(r, c?)
set(r, c, value?)
row(r)
col(c)
slice(from, to, axis)
block(rows_from, cols_from, rows_to?, cols_to?)
remove(idx, axis)
removeIf(cond, axis)
sample(n, axis)
fill(value)
map(cb)
forEach(cb)
transpose()
adjoint()
flip(axis)
swap(a, b, axis)
sort(axis)
shuffle(axis)
unique(axis, tol)
resize(rows, cols, init)
reshape(rows, cols)
repeat(n, axis)
concat(m, axis)
reduce(cb, init?, axis, keepdims)
every(cb, axis)
some(cb, axis)
max(axis)
min(axis)
median(axis)
quantile(q, axis)
argmax(axis)
argmin(axis)
sum(axis)
mean(axis)
prod(axis)
variance(axis, ddof)
std(axis, ddof)
isSquare()
isDiag(tol)
isIdentity(tol)
isZero(tol)
isTriangular(tol)
isLowerTriangular(tol)
isUpperTriangular(tol)
isSymmetric(tol)
isHermitian(tol)
isAlternating(tol)
isSkewHermitian(tol)
isRegular(tol)
isNormal(tol)
isOrthogonal(tol)
isUnitary(tol)
isNilpotent(tol)
diag()
trace()
norm(p)
normInduced(p)
normSpectral()
normEntrywise(p)
normFrobenius()
normMax()
normSchatten(p)
normNuclear()
rank(tol)
det()
negative()
not()
bitnot()
abs()
round()
floor()
ceil()
leftShift(n)
signedRightShift(n)
unsignedRightShift(n)
broadcastOperate(o, fn)
operateAt(r, c, fn?)
add(o)
addAt(r, c, v)
sub(o)
isub(o)
subAt(r, c, v)
isubAt(r, c, v)
mult(o)
multAt(r, c, v)
div(o)
idiv(o)
divAt(r, c, v)
idivAt(r, c, v)
mod(o)
imod(o)
modAt(r, c, v)
imodAt(r, c, v)
and(o)
andAt(r, c, v)
or(o)
orAt(r, c, v)
bitand(o)
bitandAt(r, c, v)
bitor(o)
bitorAt(r, c, v)
bitxor(o)
bitxorAt(r, c, v)
dot(o)
tDot(o)
kron(mat)
convolute(kernel, normalize)
reducedRowEchelonForm(tol)
inv()
invLowerTriangular()
invUpperTriangular()
invRowReduction()
invLU()
pseudoInv()
pseudoInvNaive()
pseudoInvQR()
pseudoInvSVD()
pseudoInvBenIsraelCohen()
sqrt()
power(p)
exp()
log()
cov(ddof)
gram()
solve(b)
solveLowerTriangular(b)
solveUpperTriangular(b)
bidiag()
bidiagHouseholder(return_uv)
tridiag()
tridiagHouseholder(return_u)
tridiagLanczos(k)
hessenberg()
hessenbergArnoldi(k)
lu()
qr()
qrGramSchmidt()
qrHouseholder()
singularValues()
svd()
svdEigen()
svdGolubKahan()
cholesky()
choleskyGaussian()
choleskyBanachiewicz()
choleskyCrout()
modifiedCholesky()
schur()
schurQR(shift)
rankFactorization()
eigen()
eigenValues()
eigenVectors()
eigenValuesBiSection()
eigenValuesLR()
eigenValuesQR()
eigenJacobi(maxIteration)
eigenPowerIteration()
eigenInverseIteration(ev)

Tensor class

new Tensor(size: Array<number>, value: (number | Array<number>)?)
Parameters
size (Array<number>) Sizes for each dimension
value ((number | Array<number>)?) Initial values
Static Members
zeros(size)
ones(size)
random(size, min, max)
randn(size, myu, sigma)
fromArray(arr)
Instance Members
dimension
sizes
length
value
iterator()
toArray()
toString()
toMatrix()
toScaler()
copy()
equals(other)
at(i)
set(i, value)
select(idx, axis)
slice(from, to, axis)
fill(value)
map(cb)
forEach(cb)
transpose(axises)
flip(axis)
shuffle(axis)
resize(sizes, init)
reshape(sizes)
repeat(n, axis)
concat(t, axis)
reduce(cb, init?, axis, keepdims)
broadcastOperate(o, fn)
operateAt(i, fn?)
dot(o)

GraphException

lib/util/graph.js

Exception for graph class

new GraphException(message: string, value: any)

Extends Error

Parameters
message (string) Error message
value (any) Some value

Edge of graph

new Edge(from: number, to: number, value: unknown, direct: boolean)
Parameters
from (number) Index of the starting node of the edge
to (number) Index of the end node of the edge
value (unknown = null) Value of the edge
direct (boolean = false) true if the edge is direct

Graph class

new Graph(nodes: (number | Array<unknown>), edges: any)
Parameters
nodes ((number | Array<unknown>) = 0) Number of nodes or values of nodes
edges (any = [])
Static Members
fromAdjacency(mat)
complete(n)
completeBipartite(n, m)
cycle(n, direct)
wheel(n)
windmill(k, n)
fromName(name)
Instance Members
order
size
nodes
edges
toDot()
toString()
copy()
degree(k, undirect, direct)
adjacencies(k, undirect, direct)
components()
biconnectedComponents()
diameter()
eccentricity(k)
radius()
center()
girth()
clique(k?)
chromaticNumber()
chromaticNumberWelchPowell()
chromaticIndex()
articulations()
articulationsEachNodes()
bridges()
addNode(value?)
getNode(k?)
removeNode(k)
clearNodes()
addEdge(from, to, value, direct)
getEdges(from, to, undirect, direct)
removeEdges(from, to, direct)
clearEdges()
adjacencyMatrix()
adjacencyList(direct)
degreeMatrix(direct)
laplacianMatrix()
isNull()
isEdgeless()
isUndirected()
isDirected()
isMixed()
isOriented()
isWeighted()
isSimple()
isConnected()
isBiconnected()
isTree()
isForest()
isBipartite()
isComplete()
isRegular(n = null)
isPlainer()
isPlainerAddEdge()
isPlainerAddVertex()
isSymmetric()
isDAG()
isSeparable()
isEulerian()
isSemiEulerian()
isHamiltonian()
isSemiHamiltonian()
hasCycle()
hasCycleDFS()
hasCycleEachNodes()
toUndirected()
toSimple()
isomorphism(g)
isomorphismUllmann(g)
isomorphismVF2(g)
inducedSub(k)
complement()
line()
contraction(a, b)
subdivision(a, b)
cleaving(a)
disjointUnion(g)
substitution(k, g)
cartesianProduct(g)
tensorProduct(g)
strongProduct(g)
lexicographicProduct(g)
shortestPath(from?)
shortestPathBreadthFirstSearch(from)
shortestPathDijkstra(from)
shortestPathBellmanFord(from)
shortestPathFloydWarshall()
minimumSpanningTree()
minimumSpanningTreePrim()
minimumSpanningTreeKruskal()
minimumSpanningTreeBoruvka()
hamiltonianPath(from?)
hamiltonianPathDynamicProgramming(from?)
hamiltonianCycle()
cut(s, t)
mincut(minv)
mincutBruteForce(minv)
mincutStoerWagner(minv, startnode)
mincutKargers(minv, trials = null)
mincutKargersStein(minv, trials = null)
bisectionSpectral()

Complex number

new Complex(real: number, imag: number)
Parameters
real (number = 0) Real number
imag (number = 0) Imaginary number
Instance Members
real
imaginary
abs()
conjugate()
add(other)
sub(other)
mult(other)
div(other)
sqrt()
cbrt()
exp()
log()

A2C agent

new A2CAgent(env: RLEnvironmentBase, resolution: number, procs: number, layers: Array<Object<string, any>>, optimizer: string)
Parameters
env (RLEnvironmentBase) Environment
resolution (number) Resolution of actions
procs (number) Number of processes
layers (Array<Object<string, any>>) Network layers
optimizer (string) Optimizer of the network
Instance Members
get_score()
get_action(state)
update(done, learning_rate, batch)

Angle-based Outlier Detection

new ABOD(k: number)
Parameters
k (number = Infinity) Number of neighborhoods
Instance Members
predict(datas)

Lower-bound for the Angle-based Outlier Detection

new LBABOD(k: number, l: number)
Parameters
k (number = 10) Number of neighborhoods
l (number = 5) Number of outliers
Instance Members
predict(datas)

Adaptive Linear Neuron model

new ADALINE(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

Adaptive Metric Nearest Neighbor

new ADAMENN(k0: number?, k1: number, k2: number?, l: number?, k: number, c: number)
Parameters
k0 (number? = null) The number of neighbors of the test point
k1 (number = 3) The number of neighbors in N1 for estimation
k2 (number? = null) The size of the neighborhood N2 for each of the k0 neighbors for estimation
l (number? = null) The number of points within the delta intervals
k (number = 3) The number of neighbors in the final nearest neighbor rule
c (number = 0.5) The positive factor for the exponential weighting scheme
Instance Members
fit(x, y)
predict(datas)

Adaptive thresholding

new AdaptiveThresholding(method: ("mean" | "gaussian" | "median" | "midgray"), k: number, c: number)
Parameters
method (("mean" | "gaussian" | "median" | "midgray") = 'mean') Method name
k (number = 3) Size of local range
c (number = 2) Value subtracted from threshold
Instance Members
predict(x)

Affinity propagation model

new AffinityPropagation()
Instance Members
categories
centroids
size
epoch
init(datas)
fit()
predict()

AgglomerativeClusterNode

lib/model/agglomerative.js
AgglomerativeClusterNode

Type: object

Properties
point (Array<number>?) : Data point of leaf node
index (number?) : Data index of leaf node
distance (number?) : Distance between children nodes
distances (Array<number>?) : Distances of leaf data and others
size (number) : Number of leaf nodes
children (Array<AgglomerativeClusterNode>?) : Children nodes
leafs (Array<AgglomerativeClusterNode>) : Leaf nodes

AgglomerativeClustering

lib/model/agglomerative.js

Agglomerative clustering

new AgglomerativeClustering(metric: ("euclid" | "manhattan" | "chebyshev"))
Parameters
metric (("euclid" | "manhattan" | "chebyshev") = 'euclid') Metric name
Instance Members
fit(points)
getClusters(number)
predict(k)
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

CompleteLinkageAgglomerativeClustering

lib/model/agglomerative.js

Complete linkage agglomerative clustering

new CompleteLinkageAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

SingleLinkageAgglomerativeClustering

lib/model/agglomerative.js

Single linkage agglomerative clustering

new SingleLinkageAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

GroupAverageAgglomerativeClustering

lib/model/agglomerative.js

Group average agglomerative clustering

new GroupAverageAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

WardsAgglomerativeClustering

lib/model/agglomerative.js

Ward's agglomerative clustering

new WardsAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

CentroidAgglomerativeClustering

lib/model/agglomerative.js

Centroid agglomerative clustering

new CentroidAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

WeightedAverageAgglomerativeClustering

lib/model/agglomerative.js

Weighted average agglomerative clustering

new WeightedAverageAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

MedianAgglomerativeClustering

lib/model/agglomerative.js

Median agglomerative clustering

new MedianAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

AkimaInterpolation

lib/model/akima.js

Akima interpolation

new AkimaInterpolation(modified: boolean)
Parameters
modified (boolean = false) Use modified method or not
Instance Members
fit(x, y)
predict(target)

Approximate Large Margin algorithm

new ALMA(p: number, alpha: number, b: number, c: number)
Parameters
p (number = 2) Power parameter for norm
alpha (number = 1) Degree of approximation to the optimal margin hyperplane
b (number = 1) Tuning parameter
c (number = 1) Tuning parameter
Related
A New Approximate Maximal Margin Classification Algorithm. (2001)
Instance Members
update(x, y)
fit(x, y)
predict(data)

Averaged One-Dependence Estimators

new AODE(discrete: number)
Parameters
discrete (number = 20) Discretized number
Instance Members
fit(datas, y)
predict(data)

Autoregressive model

new AR(p: number, method: ("lsm" | "yuleWalker" | "levinson" | "householder"))
Parameters
p (number) Order
method (("lsm" | "yuleWalker" | "levinson" | "householder") = lms) Method name
Instance Members
fit(data)
predict(data, k)

Autoregressive moving average model

new ARMA(p: number, q: number)
Parameters
p (number) Order of AR
q (number) Order of MA
Instance Members
fit(data)
predict(data, k)

Adaptive regularization of Weight Vectors

new AROW(r: number)
Parameters
r (number = 0.1) Learning rate
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Adaptive resonance theory

new ART(t: number, method: "l2")
Parameters
t (number = 1) Threshold
method ("l2" = 'l2') Method name
Instance Members
size
fit(datas)
predict(datas)

Apriori algorithm

new Apriori(minsup: number)
Parameters
minsup (number) Minimum support
Instance Members
predict(x)

Association analysis

new AssociationAnalysis(support: number)
Parameters
support (number) Minimum support
Instance Members
fit(x)
items(n)
support(a)
confidence(a, b)
lift(a, b)

Autoencoder

new Autoencoder(input_size: number, reduce_size: number, enc_layers: Array<Object<string, any>>, dec_layers: Array<Object<string, any>>, optimizer: string)
Parameters
input_size (number) Input size
reduce_size (number) Reduced dimension
enc_layers (Array<Object<string, any>>) Layers of encoder
dec_layers (Array<Object<string, any>>) Layers of decoder
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(train_x, iteration, rate, batch, rho)
predict(x)
reduce(x)

Automatic thresholding

new AutomaticThresholding()
Instance Members
fit(x)
predict(x)

Average shifted histogram

new AverageShiftedHistogram(config: object, step: number)
Parameters
config (object) Config
step (number) Number of bins to average
Instance Members
fit(datas)
predict(datas)

BalancedHistogramThresholding

lib/model/balanced_histogram.js

Balanced histogram thresholding

new BalancedHistogramThresholding(minCount: number)
Parameters
minCount (number = 500) Minimum data count
Instance Members
predict(x)

Ballseptron

new Ballseptron(r: number)
Parameters
r (number) Radius
Instance Members
fit(x, y)
predict(data)

Banditron

new Banditron(gamma: number)
Parameters
gamma (number = 0.5) Gamma
Instance Members
fit(x, y)
predict(data)

BayesianLinearRegression

lib/model/bayesian_linear.js

Bayesian linear regression

new BayesianLinearRegression(lambda: number, sigma: number)
Parameters
lambda (number = 0.1) Tuning parameter
sigma (number = 0.2) Initial sigma of normal distribution
Instance Members
fit(x, y)
predict(x)

Bayesian Network

new BayesianNetwork(alpha: number)
Parameters
alpha (number) Equivalent sample size
Instance Members
fit(x)
probability(x)

BernsenThresholding

lib/model/bernsen.js

Bernsen thresholding

new BernsenThresholding(n: number, ct: number)
Parameters
n (number = 3) Size of local range
ct (number = 15) Minimum value of contrast
Instance Members
predict(x)

Bessel filter

new BesselFilter(n: number, c: number)

Extends LowpassFilter

Parameters
n (number = 2) Order
c (number = 0.5) Cutoff rate

Bilinear interpolation

new BilinearInterpolation()
Instance Members
fit(values, grids)
predict(x)

Balanced iterative reducing and clustering using hierarchies

new BIRCH(k: number, b: number, t: number, l: number)
Parameters
k (number)
b (number = 10) Maximum number of entries for each non-leaf nodes
t (number = 0.2) Threshold
l (number = Infinity) Maximum number of entries for each leaf nodes
Instance Members
fit(datas)
predict(datas)

Bounded Online Gradient Descent

new BOGD(b: number, eta: number, lambda: number, gamma: number, sampling: ("uniform" | "nonuniform"), kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), loss: ("zero_one" | "hinge"))
Parameters
b (number = 10) Maximum budget size
eta (number = 1) Stepsize
lambda (number = 0.1) Regularization parameter
gamma (number = 0.1) Maximum coefficient
sampling (("uniform" | "nonuniform") = nonuniform) Sampling approach
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
loss (("zero_one" | "hinge") = hinge) Loss type name
Instance Members
fit(x, y)
predict(data)

Box-Cox transformation

new BoxCox(lambda: number?)
Parameters
lambda (number? = null) Lambda
Instance Members
fit(x)
predict(x)

Budgeted online Passive-Aggressive

new BPA(c: number, b: number, version: ("simple" | "projecting" | "nn"), kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
c (number = 1) Regularization parameter
b (number = 10) Budget size
version (("simple" | "projecting" | "nn") = simple) Version
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Brahmagupta interpolation

new BrahmaguptaInterpolation()
Instance Members
fit(x, y)
predict(target)

Budgeted Stochastic Gradient Descent

new BSGD(b: number, eta: number, lambda: number, maintenance: ("removal" | "projection" | "merging"), kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
b (number = 10) Budget size
eta (number = 1) Learning rate
lambda (number = 1) Regularization parameter
maintenance (("removal" | "projection" | "merging") = removal) Maintenance type
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)
constructor(b: number, eta: number, lambda: number, maintenance: ("removal" | "projection" | "merging"), kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
b (number = 10) Budget size
eta (number = 1) Learning rate
lambda (number = 1) Regularization parameter
maintenance (("removal" | "projection" | "merging") = removal) Maintenance type
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name

Fit model.

fit(x: Array<Array<number>>, y: Array<any>)
Parameters
x (Array<Array<number>>) Training data
y (Array<any>) Target values

Returns predicted values.

predict(data: Array<Array<number>>): Array<any>
Parameters
data (Array<Array<number>>) Sample data
Returns
Array<any>: Predicted values

Budget Perceptron

new BudgetPerceptron(beta: number, n: number)
Parameters
beta (number) Tolerance
n (number = 0) Cachs size
Instance Members
fit(x, y)
predict(data)

ButterworthFilter

lib/model/butterworth.js

Butterworth filter

new ButterworthFilter(n: number, c: number)

Extends LowpassFilter

Parameters
n (number = 2) Order
c (number = 0.5) Cutoff rate

Clustering based on Closest Pairs

new C2P(r: number, m: number)
Parameters
r (number) Number of representative points
m (number) Number of required sub-clusters
Instance Members
fit(data)
getClusters(number)
predict(k)

Canny edge detection

new Canny(th1: number, th2: number)
Parameters
th1 (number) Big threshold
th2 (number) Small threshold
Instance Members
predict(x)

Clustering Affinity Search Technique

new CAST(t: number)
Parameters
t (number) Affinity threshold
Instance Members
size
fit(datas)
predict()

Categorical naive bayes

new CategoricalNaiveBayes(alpha: number)
Parameters
alpha (number = 1.0) Smoothing parameter
Instance Members
fit(datas, labels)
probability(datas)
predict(datas)

CatmullRomSplines

lib/model/catmull_rom.js

Catmull-Rom splines interpolation

new CatmullRomSplines()
Instance Members
fit(x, y)
predict(target)

CentripetalCatmullRomSplines

lib/model/catmull_rom.js

Centripetal Catmull-Rom splines interpolation

new CentripetalCatmullRomSplines(alpha: number)
Parameters
alpha (number = 0.5) Number for knot parameterization
Instance Members
fit(x, y)
predict(target)

CHAMELEON

new CHAMELEON(k: number)
Parameters
k (number = 5) Number of neighborhoods
Instance Members
fit(datas)
getClusters(number)
predict(k)

Change finder

new ChangeFinder(p: number, r: number, smooth: number)
Deprecated: Does not work properly
Parameters
p (number = 1) Order
r (number = 0.5) Forgetting factor
smooth (number = 10) Smoothing window size
Instance Members
fit(datas)
predict()

ChebyshevFilter

lib/model/chebyshev.js

Chebyshev filter

new ChebyshevFilter(type: (1 | 2), ripple: number, n: number, c: number)

Extends LowpassFilter

Parameters
type ((1 | 2) = 1) Type number
ripple (number = 1) Ripple factor
n (number = 2) Order
c (number = 0.5) Cutoff rate

Clustering LARge Applications

new CLARA(k: number)
Parameters
k (number) Number of clusters
Instance Members
init(datas)
fit()
predict()

Clustering Large Applications based on RANdomized Search

new CLARANS(k: number)
Parameters
k (number) Number of clusters
Instance Members
init(datas)
fit(numlocal, maxneighbor)
predict()

CLustering In QUEst

new CLIQUE(xi: (number | Array<number>), t: number)
Parameters
xi ((number | Array<number>)) Intervals
t (number) Density threshold
Instance Members
size
fit(datas)
predict(x)

CLUstEring based on local Shrinking

new CLUES(alpha: number)
Parameters
alpha (number = 0.05) Speed factor
Instance Members
size
fit(datas)
predict()

Co-training

new CoTraining(view1: object, view2: object)
Parameters
view1 (object) View
view2 (object) View
Instance Members
init(x, y)
fit()
predict()

Connectivity-based Outlier Factor

new COF(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Conscience on-line learning

new COLL(c: number, eta: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
c (number) Number of clusters
eta (number = 1) Initial learning rate
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
init(datas)
fit()
predict()

Complement Naive Bayes

new ComplementNaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
predict(data)

Confidence weighted

new ConfidenceWeighted(eta: number)
Parameters
eta (number) Confidence value
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

SoftConfidenceWeighted

lib/model/confidence_weighted.js

Soft confidence weighted

new SoftConfidenceWeighted(eta: number, cost: number, v: (1 | 2))

Extends ConfidenceWeighted

Parameters
eta (number) Confidence value
cost (number) Tradeoff value between passiveness and aggressiveness
v ((1 | 2)) Version number

Cosine interpolation

new CosineInterpolation()
Instance Members
fit(x, y)
predict(target)

Conditional random fields

new CRF()
Instance Members
fit(x, y)
probability(x, y)
predict(x)

CubicConvolutionInterpolation

lib/model/cubic_convolution.js

Cubic-convolution interpolation

new CubicConvolutionInterpolation(a: number)
Parameters
a (number) Tuning parameter
Instance Members
fit(values)
predict(index)

Cubic Hermite spline

new CubicHermiteSpline(t: number, b: number)
Parameters
t (number) Tension factor
b (number) Bias factor
Instance Members
fit(x, y)
predict(target)

Cubic interpolation

new CubicInterpolation()
Instance Members
fit(x, y)
predict(target)

Cumulative moving average

new CumulativeMovingAverage()
Instance Members
predict(data)

Cumulative sum change point detection

new CumSum()
Instance Members
init(datas)
fit()
predict()
CURENode

Type: object

Properties
point (Array<number>?) : Data point of leaf node
index (number?) : Data index of leaf node
distance (number?) : Distance between children nodes
size (number) : Number of leaf nodes
children (Array<CURENode>?) : Children nodes
leafs (Array<CURENode>) : Leaf nodes

Clustering Using REpresentatives

new CURE(c: number)
Parameters
c (number) Number of representative points
Instance Members
fit(data)
getClusters(number)
predict(k)

DiscriminantAdaptiveNearestNeighbor

lib/model/dann.js

Discriminant adaptive nearest neighbor

new DiscriminantAdaptiveNearestNeighbor(k: number)
Parameters
k (number = null) Number of neighborhoods
Instance Members
fit(x, y)
predict(data, iteration)

Distribution Based Clustering of LArge Spatial Databases

new DBCLASD()
Instance Members
predict(datas)

Density-based spatial clustering of applications with noise

new DBSCAN(eps: number, minPts: number, metric: ("euclid" | "manhattan" | "chebyshev"))
Parameters
eps (number = 0.5) Radius to determine neighborhood
minPts (number = 5) Minimum size of cluster
metric (("euclid" | "manhattan" | "chebyshev") = euclid) Metric name
Instance Members
predict(datas)

Decision tree

new DecisionTree()
Instance Members
depth
init(datas, targets)
fit()
importance()
predict_value(data)

DecisionTreeClassifier

lib/model/decision_tree.js

Decision tree classifier

new DecisionTreeClassifier(method: ("ID3" | "CART"))

Extends DecisionTree

Parameters
method (("ID3" | "CART")) Method name
Instance Members
predict_prob(data)
predict(data)

DecisionTreeRegression

lib/model/decision_tree.js

Decision tree regression

new DecisionTreeRegression()

Extends DecisionTree

Instance Members
predict(data)

Delaunay interpolation

new DelaunayInterpolation()
Instance Members
fit(x, y)
predict(x)

DemingRegression

lib/model/deming.js

Deming regression

new DemingRegression(d: number)
Parameters
d (number) Ratio of variances
Instance Members
fit(x, y)
predict(x)

DENsity CLUstering

new DENCLUE(h: number, version: (1 | 2), kernel: ("gaussian" | function (Array<number>): number))
Parameters
h (number) Smoothing parameter for the kernel
version ((1 | 2) = 1) Version number
kernel (("gaussian" | function (Array<number>): number) = gaussian) Kernel name
Instance Members
size
init(datas)
fit()
predict()

DIvisive ANAlysis Clustering

new DIANA()
Instance Members
size
init(datas)
fit()
predict()

Diffusion map

new DiffusionMap(t: number, kernel: ("gaussian" | function (Array<number>, Array<number>): number))
Parameters
t (number) Power parameter
kernel (("gaussian" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
predict(x, rd)

Deep Q-Network agent

new DQNAgent(env: RLEnvironmentBase, resolution: number, layers: Array<Object<string, any>>, optimizer: string)
Parameters
env (RLEnvironmentBase) Environment
resolution (number) Resolution of actions
layers (Array<Object<string, any>>) Network layers
optimizer (string) Optimizer of the network
Instance Members
method
get_score()
get_action(state, greedy_rate)
update(action, state, next_state, reward, done, learning_rate, batch)

Dynamic programming agent

new DPAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
get_score()
get_action(state)
update(method)

Elastic net

new ElasticNet(lambda: number, alpha: number, method: ("ISTA" | "CD"))
Parameters
lambda (number = 0.1) Regularization strength
alpha (number = 0.5) Mixing parameter
method (("ISTA" | "CD") = CD) Method name
Instance Members
fit(x, y)
predict(x)
importance()

Elliptic filter

new EllipticFilter(ripple: number, n: number, xi: number, c: number)

Extends LowpassFilter

Parameters
ripple (number = 1) Ripple factor
n (number = 2) Order
xi (number = 1) Selectivity factor
c (number = 0.5) Cutoff rate

Extended Natural Neighbor

new ENaN(metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
fit(datas, targets)
predict(datas)

Extended Nearest Neighbor

new ENN(version: (0 | 1 | 2), k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
version ((0 | 1 | 2) = 1) Version
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
fit(datas, targets)
predict(datas)
BinaryModel

Type: object

Properties
init (function (Array<Array<number>>, Array<any>): void) : Initialize model
fit (function (...any): void) : Fit model
predict (function (Array<Array<number>>): Array<number>) : Returns predicted values

EnsembleBinaryModel

lib/model/ensemble_binary.js

Ensemble binary models

new EnsembleBinaryModel(model: any, type: ("oneone" | "onerest"), classes: Array<any>?)
Parameters
model (any)
type (("oneone" | "onerest")) Type name
classes (Array<any>?) Initial class labels
Instance Members
init(train_x, train_y)
fit(x, y, args)
predict(data)

ExponentialMovingAverage

lib/model/exponential_average.js

Exponential moving average

new ExponentialMovingAverage()
Instance Members
predict(data, k)

Modified moving average

new ModifiedMovingAverage()
Instance Members
predict(data, k)

Bsae class for Extremely Randomized Trees

new ExtraTrees(tree_num: number, sampling_rate: number)
Parameters
tree_num (number) Number of trees
sampling_rate (number = 1.0) Sampling rate
Instance Members
depth
init(datas, targets)
fit()

ExtraTreesClassifier

lib/model/extra_trees.js

Extra trees classifier

new ExtraTreesClassifier(tree_num: number, sampling_rate: number)

Extends ExtraTrees

Parameters
tree_num (number) Number of trees
sampling_rate (number = 1.0) Sampling rate
Instance Members
predict(datas)

ExtraTreesRegressor

lib/model/extra_trees.js

Extra trees regressor

new ExtraTreesRegressor(tree_num: number, sampling_rate: number)

Extends ExtraTrees

Parameters
tree_num (number) Number of trees
sampling_rate (number = 1.0) Sampling rate
Instance Members
predict(datas)

FastMap

new FastMap()
Instance Members
predict(x, rd)

a Fast and INtelligent subspace clustering algorithm using DImension voting

new FINDIT(minsize: number, mindist: number)
Parameters
minsize (number) Mininum size of clusters
mindist (number) Merge threshold
Instance Members
size
fit(datas)
predict(x)

Forgetron

new Forgetron(b: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
b (number) Budget parameter
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Fuzzy c-means

new FuzzyCMeans(m: number)
Parameters
m (number = 2) Fuzziness factor
Instance Members
init(datas)
add()
fit()
predict()

Fuzzy k-nearest neighbor

new FuzzyKNN(k: number, m: number)
Parameters
k (number = 5) Number of neighborhoods
m (number = 2) Factor of weight for distance
Instance Members
categories
add(point, category?)
fit(datas, targets)
predict(datas)

Generative adversarial networks

new GAN(noise_dim: number, g_hidden: Array<Object<string, any>>, d_hidden: Array<Object<string, any>>, g_opt: string, d_opt: string, class_size: (number | null), type: ("" | "conditional"))
Parameters
noise_dim (number) Number of noise dimension
g_hidden (Array<Object<string, any>>) Layers of generator
d_hidden (Array<Object<string, any>>) Layers of discriminator
g_opt (string) Optimizer of the generator network
d_opt (string) Optimizer of the discriminator network
class_size ((number | null)) Class size for conditional type
type (("" | "conditional")) Type name
Instance Members
epoch
fit(x, y, step, gen_rate, dis_rate, batch)
prob(x, y)
generate(n, y)

Gasser–Müller kernel estimator

new GasserMuller(h: number)
Parameters
h (number) Smoothing parameter for the kernel
Instance Members
fit(x, y)
predict(x)

Gaussian process

new GaussianProcess(kernel: "gaussian", beta: number)
Parameters
kernel ("gaussian" = gaussian) Kernel name
beta (number = 1) Precision parameter
Instance Members
init(x, y)
fit(learning_rate)
predict(x)

Gradient boosting decision tree

new GBDT(maxdepth: number, srate: number, lr: number)
Parameters
maxdepth (number = 1) Maximum depth of tree
srate (number = 1.0) Sampling rate
lr (number = 0) Learning rate
Instance Members
size
init(x, y)
fit()
predict(x)

GBDTClassifier

lib/model/gbdt.js

Gradient boosting decision tree classifier

new GBDTClassifier(maxdepth: number, srate: number, lr: number)

Extends GBDT

Parameters
maxdepth (number = 1) Maximum depth of tree
srate (number = 1.0) Sampling rate
lr (number = 0) Learning rate
Instance Members
init(x, y)
predict(x)

Generalized extreme studentized deviate

new GeneralizedESD(alpha: number, r: number)
Parameters
alpha (number) Significance level
r (number) Max number of outliers
Instance Members
predict(data)
GeneticModel

Type: object

Properties
run (function (...any): void) : Run model
mutation (function (): GeneticModel) : Returns mutated model
mix (function (GeneticModel): GeneticModel) : Returns mixed model
score (function (): number) : Returns a number how good the model is

Genetic algorithm

new GeneticAlgorithm(size: number, model: any)
Parameters
size (number) Number of models per generation
model (any)
Instance Members
bestModel
run(args)
next(mutation_rate)

GeneticAlgorithmGeneration

lib/model/genetic_algorithm.js

Genetic algorithm generation

new GeneticAlgorithmGeneration(env: RLEnvironmentBase, size: number, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
size (number = 100) Number of models per generation
resolution (number = 20) Resolution
Instance Members
reset()
get_score()
top_agent()
run()
next(mutation_rate)

Genetic k-means model

new GeneticKMeans(k: number, size: number)
Parameters
k (number) Number of clusters
size (number) Number of models per generation
Instance Members
centroids
bestModel
init(datas)
predict(datas)
fit()

G-means

new GMeans()
Instance Members
centroids
size
clear()
fit(datas, iterations)
predict(datas)

Gaussian mixture model

new GMM()
Instance Members
add()
clear()
probability(data)
predict(data)
fit(datas)

SemiSupervisedGMM

lib/model/gmm.js

Semi-Supervised gaussian mixture model

new SemiSupervisedGMM()

Extends GMM

Instance Members
categories
init(datas, labels)
fit(datas, y)
predict(data)

Gaussian mixture regression

new GMR()

Extends GMM

Instance Members
add()
clear()
fit(x, y)
probability(x, y)
predict(x)

Gaussian Process Latent Variable Model

new GPLVM(rd: number, alpha: number, ez: number, ea: number, ep: number, kernel: "gaussian", kernelArgs: Array<any>?)
Parameters
rd (number) Reduced dimension
alpha (number) Precision parameter
ez (number = 1.0) Learning rate for z
ea (number = 0.005) Learning rate for alpha
ep (number = 0.2) Learning rate for kernel
kernel ("gaussian" = gaussian) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(x)
fit()
llh()
predict()
reconstruct(z)

Growing cell structures

new GrowingCellStructures()
Instance Members
size
update(x)
fit(x)
predict(datas)

Growing neural gas

new GrowingNeuralGas(l: number, m: number)
Parameters
l (number) Neughborhood range
m (number) Decreasing factor of l
Instance Members
size
update(x)
fit(x)
predict(datas)

Growing Self-Organizing Map

new GSOM(sf: number, lr: number)
Parameters
sf (number = 0.1) Spread factor
lr (number = 0.1) Learning rate
Instance Members
size
fit(data)
predict(x)

Generative topographic mapping

new GTM(input_size: number, output_size: number, k: number, q: number)
Parameters
input_size (number) Input size
output_size (number) Output size
k (number = 20) Grid size
q (number = 10) Grid size for basis function
Instance Members
probability(x)
responsibility(x)
fit(data)
predictIndex(x)
predict(x)

Hampel filter

new HampelFilter(k: number, th: number)
Parameters
k (number = 3) Half window size
th (number = 3) Threshold
Instance Members
predict(x)

Hierarchical Density-based spatial clustering of applications with noise

new HDBSCAN(minClusterSize: number, minPts: number, metric: ("euclid" | "manhattan" | "chebyshev"))
Parameters
minClusterSize (number = 5) Minimum number of clusters to be recognized as a cluster
minPts (number = 5) Number of neighborhood with core distance
metric (("euclid" | "manhattan" | "chebyshev") = euclid) Metric name
Instance Members
size
predict(datas)

Histogram

new Histogram(config: object?)
Parameters
config (object? = {}) Config
Instance Members
fit(datas)
predict(datas)

Hessian Locally Linear Embedding

new HLLE(k: number)
Parameters
k (number = 1) Number of neighborhoods
Instance Members
predict(x, rd)

Hidden Markov model

new HMMBase(n: number)
Parameters
n (number) Number of states
Instance Members
probability(x)
bestPath(x)

Hidden Markov model

new HMM(n: number)

Extends HMMBase

Parameters
n (number) Number of states
Instance Members
fit(datas, scaled)
probability(datas)
bestPath(data)

ContinuousHMM

lib/model/hmm.js

Continuous hidden Markov model

new ContinuousHMM(n: number)

Extends HMMBase

Parameters
n (number) Number of states
Instance Members
fit(x, scaled)
probability(datas)
bestPath(data)
generate(n, length)

Holt-Winters method

new HoltWinters(a: number, b: number, g: number, s: number)
Parameters
a (number) Weight for last value
b (number = 0) Weight for trend value
g (number = 0) Weight for seasonal data
s (number = 0) Length of season
Instance Members
fit(x)
predict(k)

HopfieldNetwork

lib/model/hopfield.js

Hopfield network

new HopfieldNetwork()
Instance Members
fit(x)
energy(x)
predict(x)

Hotelling T-square Method

new Hotelling()
Instance Members
fit(data)
predict(data)

Huber regression

new HuberRegression(e: number, method: ("rls" | "gd"), lr: number)
Parameters
e (number = 1.35) Threshold of outliers
method (("rls" | "gd") = rls) Method name
lr (number = 1) Learning rate
Instance Members
fit(x, y)
predict(x)

Independent component analysis

new ICA()
Instance Members
fit(x)
predict(x, rd)

Classical ellipsoid method

new CELLIP(gamma: number, a: number)
Parameters
gamma (number = 0.1) Desired classification margin
a (number = 0.5) Tradeoff parameter
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Improved ellipsoid method

new IELLIP(b: number, c: number)
Parameters
b (number = 0.9) Parameter controlling the memory of online learning
c (number = 0.5) Parameter controlling the memory of online learning
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Locally Informative K-Nearest Neighbor

new IKNN(k: number, i: number)
Parameters
k (number) Number of neighbors
i (number) Number of informative points
Instance Members
fit(x, y)
predict(data)

Incremental principal component analysis

new IncrementalPCA(f: number)
Parameters
f (number = 0.95) Forgetting factor
Instance Members
update(x)
fit(x)
predict(x, rd)

Influenced Outlierness

new INFLO(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Inverse distance weighting

new InverseDistanceWeighting(k: number, p: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
k (number = 5) Number of neighborhoods
p (number = 2) Power parameter
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
fit(x, y)
predict(data)

InverseSmoothstepInterpolation

lib/model/inverse_smoothstep.js

Inverse smoothstep interpolation

new InverseSmoothstepInterpolation()
Instance Members
fit(x, y)
predict(target)

Iterative Self-Organizing Data Analysis Technique

new ISODATA(init_k: number, min_k: number, max_k: number, min_n: number, split_std: number, merge_dist: number)
Parameters
init_k (number) Initial cluster count
min_k (number) Minimum cluster count
max_k (number) Maximum cluster count
min_n (number) Minimum cluster size
split_std (number) Standard deviation as splid threshold
merge_dist (number) Merge distance
Instance Members
centroids
size
init(data)
fit(data)
predict(datas)

Isolation forest

new IsolationForest(tree_num: number, sampling_rate: number)
Parameters
tree_num (number = 100) Number of trees
sampling_rate (number = 0.8) Sampling rate
Instance Members
fit(datas)
predict(datas)

Isomap

new Isomap(neighbors: number)
Parameters
neighbors (number = 0) Number of neighborhoods
Instance Members
predict(x, rd)

IsotonicRegression

lib/model/isotonic.js

Isotonic regression

new IsotonicRegression()
Instance Members
fit(x, y)
predict(x)

Kalman filter

new KalmanFilter()
Instance Members
fit(z)
predict(k)

Kernel Density Estimation Outlier Score

new KDEOS(kmin: number, kmax: number, kernel: ("gaussian" | "epanechnikov" | function (number, number, number): number))
Parameters
kmin (number) Minimum number of neighborhoods
kmax (number) Maximum number of neighborhoods
kernel (("gaussian" | "epanechnikov" | function (number, number, number): number) = gaussian) Kernel name
Instance Members
predict(datas)

Kernel density estimator

new KernelDensityEstimator(h: number, kernel: ("gaussian" | "rectangular" | "triangular" | "epanechnikov" | "biweight" | "triweight" | function (number): number))
Parameters
h (number = 0) Smoothing parameter for the kernel
kernel (("gaussian" | "rectangular" | "triangular" | "epanechnikov" | "biweight" | "triweight" | function (number): number) = gaussian) Kernel name
Instance Members
fit(x)
probability(x)
predict(x)

Kernel k-means

new KernelKMeans(k: number)
Parameters
k (number = 3) Number of clusters
Instance Members
init(datas)
predict()
fit()

Kernelized Primal Estimated sub-GrAdientSOlver for SVM

new KernelizedPegasos(rate: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
rate (number) Learning rate
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
init(train_x, train_y)
fit()
predict(data)

Kernelized perceptron

new KernelizedPerceptron(rate: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
rate (number = 1) Learning rate
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Kullback-Leibler importance estimation procedure

new KLIEP(sigma: Array<number>, fold: number, kernelNum: number)
Parameters
sigma (Array<number>) Sigmas of normal distribution
fold (number) Number of folds
kernelNum (number) Number of kernels
Instance Members
fit(x1, x2)
predict(x)

Bsae class for k-means like model

new KMeansBase()
Instance Members
centroids
size
add(datas)
clear()
predict(datas)
fit(datas)

k-means model

new KMeans()

Extends KMeansBase

Instance Members
_add(centroids, datas)
_move(centroids, datas)

k-means++ model

new KMeanspp()

Extends KMeans

Instance Members
_add(centroids, datas)

k-medoids model

new KMedoids()

Extends KMeans

Instance Members
_move(centroids, datas)

k-medians model

new KMedians()

Extends KMeans

Instance Members
_move(centroids, datas)

SemiSupervisedKMeansModel

lib/model/kmeans.js

semi-supervised k-means model

new SemiSupervisedKMeansModel()

Extends KMeansBase

Instance Members
categories
init(datas, labels)
fit(datas, labels)
predict(datas)

k-modes model

new KModes()
Instance Members
size
add(datas)
clear()
predict(datas)
fit(datas)

Bsae class for k-nearest neighbor models

new KNNBase(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
_add(point, category?)

k-nearest neighbor

new KNN(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

k-nearest neighbor regression

new KNNRegression(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

k-nearest neighbor anomaly detection

new KNNAnomaly(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point)
fit(datas)
predict(datas)

KNNDensityEstimation

lib/model/knearestneighbor.js

k-nearest neighbor density estimation

new KNNDensityEstimation(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point)
fit(datas)
predict(datas)

Semi-supervised k-nearest neighbor

new SemiSupervisedKNN(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict()

k-prototypes model

new KPrototypes(gamma: number, categoryPositions: Array<boolean>)
Parameters
gamma (number) Weight for categorical data
categoryPositions (Array<boolean>) Category column position
Instance Members
size
add(datas)
clear()
predict(datas)
fit(datas)

k-SVD

new KSVD(x: Array<Array<number>>, m: number, k: number?)
Parameters
x (Array<Array<number>>) Training data
m (number) Reduced dimension
k (number? = m) Sparsity parameter
Instance Members
fit()
predict()

KolmogorovZurbenkoFilter

lib/model/kz.js

Kolmogorov–Zurbenko filter

new KolmogorovZurbenkoFilter(m: number, k: number)
Parameters
m (number) Window size
k (number) Iteration count of a moving average
Instance Members
predict(x)

Label propagation

new LabelPropagation(method: ("rbf" | "knn"), sigma: number, k: number)
Parameters
method (("rbf" | "knn") = rbf) Method name
sigma (number = 0.1) Sigma of normal distribution
k (number = Infinity) Number of neighborhoods
Instance Members
init(x, y)
predict()

Label spreading

new LabelSpreading(alpha: number, method: ("rbf" | "knn"), sigma: number, k: number)
Parameters
alpha (number = 0.2) Clamping factor
method (("rbf" | "knn") = rbf) Method name
sigma (number = 0.1) Sigma of normal distribution
k (number = Infinity) Number of neighborhoods
Instance Members
init(x, y)
fit()
predict()

Ladder network

new LadderNetwork(hidden_sizes: Array<number>, lambdas: Array<number>, activation: string, optimizer: string)
Parameters
hidden_sizes (Array<number>) Sizes of hidden layers
lambdas (Array<number>) Regularization parameters
activation (string) Activation name
optimizer (string) Optimizer of the network
Instance Members
fit(train_x, train_y, iteration, rate, batch)
predict(x)

LagrangeInterpolation

lib/model/lagrange.js

Lagrange interpolation

new LagrangeInterpolation(method: ("weighted" | "newton" | ""))
Parameters
method (("weighted" | "newton" | "") = weighted) Method name
Instance Members
fit(x, y)
predict(target)

Lanczos interpolation

new LanczosInterpolation(n: number)
Parameters
n (number) Order
Instance Members
fit(values)
predict(index)

Laplacian edge detection

new Laplacian(th: number, n: (4 | 8))
Parameters
th (number) Threshold
n ((4 | 8) = 4) Number of neighborhoods
Instance Members
predict(x)

Laplacian eigenmaps

new LaplacianEigenmaps(affinity: ("rbf" | "knn"), k: number, sigma: number, laplacian: ("unnormalized" | "normalized"))
Parameters
affinity (("rbf" | "knn") = rbf) Affinity type name
k (number = 10) Number of neighborhoods
sigma (number = 1) Sigma of normal distribution
laplacian (("unnormalized" | "normalized") = unnormalized) Normalized laplacian matrix or not
Instance Members
predict(x, rd)

Least absolute shrinkage and selection operator

new Lasso(lambda: number, method: ("CD" | "ISTA" | "LARS"))
Parameters
lambda (number = 1.0) Regularization strength
method (("CD" | "ISTA" | "LARS") = CD) Method name
Instance Members
fit(x, y)
predict(x)
importance()

Latent dirichlet allocation

new LatentDirichletAllocation(t: number)
Parameters
t (number = 2) Topic count
Instance Members
init(x)
predict()

Linde-Buzo-Gray algorithm

new LBG()
Instance Members
centroids
size
clear()
fit(datas)
predict(datas)

LinearDiscriminant

lib/model/lda.js

Linear discriminant analysis

new LinearDiscriminant()
Instance Members
init(train_x, train_y)
fit()
predict(data)

FishersLinearDiscriminant

lib/model/lda.js

Fishers linear discriminant analysis

new FishersLinearDiscriminant()
Instance Members
init(train_x, train_y)
fit()
predict(data)

MulticlassLinearDiscriminant

lib/model/lda.js

Multiclass linear discriminant analysis

new MulticlassLinearDiscriminant()
Instance Members
fit(x, y)
predict(data)

LinearDiscriminantAnalysis

lib/model/lda.js

Linear discriminant analysis

new LinearDiscriminantAnalysis()
Instance Members
predict(x, t, rd)

Local Density Factor

new LDF(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Local Distance-based Outlier Factor

new LDOF(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Least absolute deviations

new LeastAbsolute()
Instance Members
fit(x, y)
predict(x)

Least squares

new LeastSquares()
Instance Members
fit(x, y)
predict(x)

LinearInterpolation

lib/model/lerp.js

Linear interpolation

new LinearInterpolation()
Instance Members
fit(x, y)
predict(target)

Locally Linear Embedding

new LLE(k: number)
Parameters
k (number = 1) Number of neighborhoods
Instance Members
predict(x, rd)

LeastMedianSquaresRegression

lib/model/lmeds.js

Least median squares regression

new LeastMedianSquaresRegression(k: number)
Parameters
k (number = 5) Sampling count
Instance Members
fit(x, y)
predict(x)

Large Margin Nearest Neighbor

new LMNN(gamma: number, lambda: number)
Parameters
gamma (number) Tuning parameter
lambda (number) Tuning parameter
Instance Members
init(x, y)
fit()
predict(x)

Local Correlation Integral

new LOCI(alpha: number)
Parameters
alpha (number = 0.5) Alpha
Instance Members
predict(datas)

Locally estimated scatterplot smoothing

new LOESS()
Instance Members
fit(x, y)
predict(x)

Local Outlier Factor

new LOF(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Laplacian of gaussian filter

new LoG(th: number)
Parameters
th (number) Threshold
Instance Members
predict(x)

Logarithmic interpolation

new LogarithmicInterpolation()
Instance Members
fit(x, y)
predict(target)

LogisticRegression

lib/model/logistic.js

Logistic regression

new LogisticRegression()
Instance Members
fit(x, y, iteration, rate, l1, l2)
predict(points)

MultinomialLogisticRegression

lib/model/logistic.js

Multinomial logistic regression

new MultinomialLogisticRegression(classes: Array<number>?)
Parameters
classes (Array<number>?) Initial class labels
Instance Members
fit(train_x, train_y, iteration, rate, l1, l2)
predict(points)

Local Outlier Probability

new LoOP(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Locally weighted scatter plot smooth

new LOWESS()
Instance Members
fit(x, y)
predict(x)

Lowpass filter

new LowpassFilter(c: number)
Parameters
c (number = 0.5) Cutoff rate
Instance Members
predict(x)

LpNormLinearRegression

lib/model/lpnorm_linear.js

Lp norm linear regression

new LpNormLinearRegression(p: number)
Parameters
p (number = 2) Power parameter for norm
Instance Members
fit(x, y)
predict(x)

Latent Semantic Analysis

new LSA()
Instance Members
predict(x, rd)

Least-squares density difference

new LSDD(sigma: Array<number>, lambda: Array<number>)
Parameters
sigma (Array<number>) Sigmas of normal distribution
lambda (Array<number>) Regularization parameters
Instance Members
fit(x1, x2)
predict(x)

LSDD for change point detection

new LSDDCPD(w: number, take: number?, lag: number?)
Parameters
w (number) Window size
take (number?) Take number
lag (number?) Lag
Instance Members
predict(datas)

least-squares importance fitting

new LSIF(sigma: Array<number>, lambda: Array<number>, fold: number, kernelNum: number)
Parameters
sigma (Array<number>) Sigmas of normal distribution
lambda (Array<number>) Regularization parameters
fold (number) Number of folds
kernelNum (number) Number of kernels
Instance Members
fit(x1, x2)
predict(x)

LeastTrimmedSquaresRegression

lib/model/lts.js

Least trimmed squares

new LeastTrimmedSquaresRegression(h: number)
Parameters
h (number = 0.9) Sampling rate
Instance Members
fit(x, y)
predict(x)

Local Tangent Space Alignment

new LTSA(k: number)
Parameters
k (number = 1) Number of neighborhoods
Instance Members
predict(x, rd)

Learning Vector Quantization clustering

new LVQCluster(k: number)
Parameters
k (number) Number of clusters
Instance Members
fit(x, lr)
predict(datas)

LVQClassifier

lib/model/lvq.js

Learning Vector Quantization classifier

new LVQClassifier(type: (1 | 2 | 3))
Parameters
type ((1 | 2 | 3)) Type number
Instance Members
fit(x, y, lr)
predict(datas)

Median Absolute Deviation

new MAD()
Instance Members
fit(data)
predict(data)

Many Adaptive Linear Neuron model

new MADALINE(sizes: Array<number>, rule: (1 | 2 | 3), rate: number)
Parameters
sizes (Array<number>) Numbers of layers
rule ((1 | 2 | 3) = 2) Rule
rate (number) Learning rate
Instance Members
fit(x, y)
outputLayers(data, from)
predict(data)

Margin Perceptron

new MarginPerceptron(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

Markov switching

new MarkovSwitching(regime: number)
Parameters
regime (number) Number of regime
Instance Members
fit(datas, eps, trial)
probability(datas)
predict(datas)

Max absolute scaler

new MaxAbsScaler()
Instance Members
fit(x)
predict(x)

MaximumLikelihoodEstimator

lib/model/maximum_likelihood.js

Maximum likelihood estimator

new MaximumLikelihoodEstimator(distribution: "normal")
Parameters
distribution ("normal" = normal) Distribution name
Instance Members
fit(x)
probability(x)
predict(x)

Minimum Covariance Determinant

new MCD(datas: Array<Array<number>>, sampling_rate: number)
Parameters
datas (Array<Array<number>>) Training data
sampling_rate (number) Sampling rate
Instance Members
fit()
predict(data)

MixtureDiscriminant

lib/model/mda.js

Mixture discriminant analysis

new MixtureDiscriminant(r: number)
Parameters
r (number) Number of components
Instance Members
init(x, y)
fit()
predict(data)

Multi-dimensional Scaling

new MDS()
Instance Members
predict(x, rd, dmat)

Mean shift

new MeanShift(h: number)
Parameters
h (number) Smoothing parameter for the kernel
Instance Members
categories
init(data)
predict(threshold)
fit()

MetropolisHastings

lib/model/mh.js

Metropolis-Hastings algorithm

new MetropolisHastings(targetFunc: function (Array<number>): number, d: number, q: "gaussian")
Parameters
targetFunc (function (Array<number>): number) Target distribution
d (number) Output size
q ("gaussian" = gaussian) Proposal density name
Instance Members
sample(n, t)

MinmaxNormalization

lib/model/minmax.js

Min-max normalization

new MinmaxNormalization(min: number, max: number)
Parameters
min (number = 0) Minimum value
max (number = 1) Maximum value
Instance Members
fit(x)
predict(x)

Margin Infused Relaxed Algorithm

new MIRA()
Instance Members
update(x, y)
fit(x, y)
predict(data)

Modified Locally Linear Embedding

new MLLE(k: number)
Parameters
k (number = 1) Number of neighborhoods
Instance Members
predict(data, rd)

MLPClassifier

lib/model/mlp.js

Multi layer perceptron classifier

new MLPClassifier(hidden_sizes: Array<number>, activation: string, optimizer: string)
Parameters
hidden_sizes (Array<number>) Sizes of hidden layers
activation (string) Activation name
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(train_x, train_y, iteration, rate, batch)
predict(x)

MLPRegressor

lib/model/mlp.js

Multi layer perceptron regressor

new MLPRegressor(hidden_sizes: Array<number>, activation: string, optimizer: string)
Parameters
hidden_sizes (Array<number>) Sizes of hidden layers
activation (string) Activation name
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(train_x, train_y, iteration, rate, batch)
predict(x)

Method of Optimal Direction

new MOD(x: Array<Array<number>>, m: number, k: number?)
Parameters
x (Array<Array<number>>) Training data
m (number) Reduced dimension
k (number? = m) Sparsity parameter
Instance Members
fit()
predict()

MONothetic Analysis Clustering

new MONA()
Instance Members
size
init(datas)
fit()
predict()

MonotheticClustering

lib/model/monothetic.js

Monothetic Clustering

new MonotheticClustering()
Instance Members
size
init(datas)
fit()
predict()

Monte Carlo agent

new MCAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
reset()
get_score()
get_action(state, greedy_rate)
update(action, state, reward, done)

Mountain method

new Mountain(r: number, alpha: number, beta: number)
Parameters
r (number) Resolution of grid
alpha (number) Tuning parameter
beta (number) Tuning parameter
Instance Members
init(datas)
fit()
predict(data)

SimpleMovingAverage

lib/model/moving_average.js

Simple moving average

new SimpleMovingAverage()
Instance Members
predict(data, n)

LinearWeightedMovingAverage

lib/model/moving_average.js

Linear weighted moving average

new LinearWeightedMovingAverage()
Instance Members
predict(data, n)

TriangularMovingAverage

lib/model/moving_average.js

Triangular moving average

new TriangularMovingAverage()
Instance Members
predict(data, k)

Moving median

new MovingMedian()
Instance Members
predict(data, n)

Mahalanobis Taguchi method

new MT()
Instance Members
fit(data)
predict(data)

MutualInformationFeatureSelection

lib/model/mutual_information.js

Mutual information feature selector

new MutualInformationFeatureSelection()
Instance Members
fit(x, y)
predict(x, k)

Mutual k-nearest-neighbor model

new MutualKNN(k: number)
Parameters
k (number = 5) Number of neighborhoods
Instance Members
size
fit(datas)
predict()

n-cubic interpolation

new NCubicInterpolation()
Instance Members
fit(values, grids)
predict(x)

n-linear interpolation

new NLinearInterpolation()
Instance Members
fit(values, grids)
predict(x)

Nadaraya–Watson kernel regression

new NadarayaWatson(s: number?)
Parameters
s (number?) Sigmas of normal distribution
Instance Members
fit(x, y)
predict(x)

Naive bayes

new NaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
probability(data)
predict(data)

Narrow Adaptive Regularization Of Weights

new NAROW(b: number)
Parameters
b (number = 1) Tuning parameter
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Natural neighbor interpolation

new NaturalNeighborInterpolation()
Instance Members
fit(x, y)
predict(x)

NeighbourhoodComponentsAnalysis

lib/model/nca.js

Neighbourhood components analysis

new NeighbourhoodComponentsAnalysis(d: number?, lr: number)
Parameters
d (number? = null) Reduced dimension
lr (number = 0.1) Learning rate
Instance Members
fit(x, y)
importance()
predict(x)

Nearest centroid classifier

new NearestCentroid(metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

Negation Naive bayes

new NegationNaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
predict(data)

Neural gas model

new NeuralGas(l: number, m: number)
Parameters
l (number = 1) Neughborhood range
m (number = 0.99) Decreasing factor of l
Instance Members
centroids
size
add(datas)
clear()
predict(datas)
fit(datas)

NeuralnetworkException

lib/model/neuralnetwork.js

Exception for neuralnetwork class

new NeuralnetworkException(message: string, value: any)

Extends Error

Parameters
message (string) Error message
value (any) Some value

Neuralnetwork

new NeuralNetwork(graph: ComputationalGraph, optimizer: ("sgd" | "adam" | "momentum" | "rmsprop"))
Parameters
graph (ComputationalGraph) Graph of a network
optimizer (("sgd" | "adam" | "momentum" | "rmsprop") = sgd) Optimizer of the network
Static Members
fromObject(layers, loss?, optimizer)
fromONNX(buffer)
Instance Members
copy()
toObject()
calc(x, t?, out?, options)
grad(e?)
update(learning_rate)
fit(x, t, epoch, learning_rate, batch_size = null, options = {})
predict(x)

NeuralnetworkLayerException

lib/model/nns/layer/base.js

Exception for neuralnetwork layer class

new NeuralnetworkLayerException(message: string, value: any)

Extends Error

Parameters
message (string) Error message
value (any) Some value

Neuralnetwork layer

new Layer(obj: object)
Parameters
obj (object) Config
Static Members
fromObject(obj)
registLayer(name?, cls?)
Instance Members
bind(values)
calc(x)
grad(bo)
update(optimizer)
toObject()

Base class for Flow-based generative model

new FlowLayer()

Extends Layer

Instance Members
inverse(y)
jacobianDeterminant()
Node

Type: object

Properties
layer (Layer) : Layer
name (string) : Name of the node
input (Array<string>?) : Input node names
outputValue ((Matrix | Array<Matrix>)?) : Output value of this node to next layer
gradientValue (Array<Matrix>?) : Gradient value of this node from next layer

ComputationalGraph

lib/model/nns/graph.js

Computational graph for Neuralnetwork structure

new ComputationalGraph()
Static Members
fromObject(nodes)
fromONNX(buffer)
Instance Members
nodes
inputNodes
outputNodes
size
toObject()
toDot()
add(layer, name?, inputs = undefined)
bind(values)
calc(require?)
grad(e?)
getNode(name)

Additive coupling layer

new AdditiveCoupling($0: Object, config: object)

Extends FlowLayer

Parameters
$0 (Object)
NameDescription
$0.d any (default null)
$0.net any (default null)
$0.rest ...any
config (object) object

AdaptivePiecewiseLinearLayer

lib/model/nns/layer/apl.js

Adaptive piecewise linear layer

new AdaptivePiecewiseLinearLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.s any (default 2)
$0.a any (default 0.1)
$0.b any (default 0)
$0.rest ...any
config (object) object

Aranda layer

new ArandaLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.l any (default 2)
$0.rest ...any
config (object) object

Argmax layer

new ArgmaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) object

Argmin layer

new ArgminLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) object

Attention layer

new AttentionLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.dk any (default null)
$0.dv any (default null)
$0.wq any (default null)
$0.wk any (default null)
$0.wv any (default null)
$0.rest ...any
config (object) object

Average pool layer

new AveragePoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.kernel any
$0.stride any (default null)
$0.padding any (default null)
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

Batch normalization layer

new BatchNormalizationLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.scale any (default 1)
$0.offset any (default 0)
$0.epsilon any (default 1.0e-12)
$0.channel_dim any (default -1)
$0.input_mean any
$0.input_var any
$0.rest ...any
config (object) object

BimodalDerivativeAdaptiveActivationLayer

lib/model/nns/layer/bdaa.js

Bimodal derivative adaptive activation layer

new BimodalDerivativeAdaptiveActivationLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.rest ...any
config (object) object

BendableLinearUnitLayer

lib/model/nns/layer/blu.js

Bendable linear unit layer

new BendableLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 0.1)
$0.rest ...any
config (object) object

Bounded ReLU layer

new BoundedReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.rest ...any
config (object) object

ContinuouslyDifferentiableELULayer

lib/model/nns/layer/celu.js

Continuously differentiable ELU layer

new ContinuouslyDifferentiableELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1.0)
$0.rest ...any
config (object) object

Clip layer

new ClipLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.min any (default null)
$0.max any (default null)
$0.rest ...any
config (object) object

Concat layer

new ConcatLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default 1)
$0.rest ...any
config (object) object

Condition layer

new CondLayer()

Extends Layer

Constant layer

new ConstLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.value any
$0.rest ...any
config (object) object

Convolutional layer

new ConvLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.kernel any
$0.channel any (default null)
$0.stride any (default null)
$0.padding any (default null)
$0.w any (default null)
$0.activation any (default null)
$0.l2_decay any (default 0)
$0.l1_decay any (default 0)
$0.activation_params any (default {})
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

ConcatenatedReLULayer

lib/model/nns/layer/crelu.js

Concatenated ReLU layer

new ConcatenatedReLULayer()

Extends Layer

Dropout layer

new DropoutLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.drop_rate any (default 0.5)
$0.rest ...any
config (object) object

Elastic ELU layer

new ElasticELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.k any (default 1)
$0.alpha any (default 1)
$0.beta any (default 1)
$0.rest ...any
config (object) object

ELU layer

new ELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.rest ...any
config (object) object

Embedding layer

new EmbeddingLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any (default 512)
$0.embeddings any (default {})
$0.rest ...any
config (object) object

Elastic ReLU layer

new ElasticReLULayer($0: Object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.rest ...any

E-swish layer

new ESwishLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 1)
$0.rest ...any
config (object) object

Fast ELU layer

new FastELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.rest ...any
config (object) object

Flatten layer

new FlattenLayer()

Extends Layer

Flexible ReLU layer

new FlexibleReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.b any (default 0)
$0.rest ...any
config (object) object

Fully connected layer

new FullyConnected($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.out_size any
$0.w any (default null)
$0.b any (default null)
$0.activation any (default null)
$0.l2_decay any (default 0)
$0.l1_decay any (default 0)
$0.activation_params any (default {})
$0.rest ...any
config (object) object

Gaussian layer

new GaussianLayer()

Extends Layer

Global average pool layer

new GlobalAveragePoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

Global Lp pool layer

new GlobalLpPoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.p any (default 2)
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

Global max pool layer

new GlobalMaxPoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

GRU layer

new GRULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.return_sequences any (default false)
$0.w_z any (default null)
$0.w_r any (default null)
$0.w_h any (default null)
$0.u_z any (default null)
$0.u_r any (default null)
$0.u_h any (default null)
$0.b_z any (default null)
$0.b_r any (default null)
$0.b_h any (default null)
$0.rest ...any
config (object) object

Hard shrink layer

new HardShrinkLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.l any (default 0.5)
$0.rest ...any
config (object) object

Hard sigmoid layer

new HardSigmoidLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 0.2)
$0.beta any (default 0.5)
$0.rest ...any
config (object) object

Hard tanh layer

new HardTanhLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.v any (default 1)
$0.rest ...any
config (object) object

Hexpo layer

new HexpoLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.b any (default 1)
$0.c any (default 1)
$0.d any (default 1)
$0.rest ...any
config (object) object

Huber loss layer

new HuberLayer()

Extends Layer

Include layer

new IncludeLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.net any
$0.input_to any (default null)
$0.train any (default true)
$0.rest ...any
config (object) object

Input layer

new InputLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.name any (default null)
$0.rest ...any
config (object) object

Improved sigmoid layer

new ImprovedSigmoidLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.alpha any (default 1)
$0.rest ...any
config (object) object

Layer normalization layer

new LayerNormalizationLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.epsilon any (default 1.0e-12)
$0.scale any (default 1)
$0.offset any (default 0)
$0.rest ...any
config (object) object

Leaky ReLU layer

new LeakyReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 0.1)
$0.rest ...any
config (object) config

Log softmax layer

new LogSoftmaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.rest ...any
config (object) object

Lp pool layer

new LpPoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.p any (default 2)
$0.kernel any
$0.stride any (default null)
$0.padding any (default null)
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

LRN layer

new LRNLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 0.0001)
$0.beta any (default 0.75)
$0.k any (default 2)
$0.n any
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

LSTM layer

new LSTMLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.return_sequences any (default false)
$0.w_z any (default null)
$0.w_in any (default null)
$0.w_for any (default null)
$0.w_out any (default null)
$0.r_z any (default null)
$0.r_in any (default null)
$0.r_for any (default null)
$0.r_out any (default null)
$0.p_in any (default null)
$0.p_for any (default null)
$0.p_out any (default null)
$0.b_z any (default null)
$0.b_in any (default null)
$0.b_for any (default null)
$0.b_out any (default null)
$0.rest ...any
config (object) object

Matrix multiply layer

new MatmulLayer()

Extends Layer

Max pool layer

new MaxPoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.kernel any
$0.stride any (default null)
$0.padding any (default null)
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

Reduce mean layer

new MeanLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

MultipleParametricELULayer

lib/model/nns/layer/mpelu.js

Multiple parametric ELU layer

new MultipleParametricELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.beta any (default 1)
$0.rest ...any
config (object) config

MSE loss layer

new MSELayer()

Extends Layer

MultibinTrainableLinearUnitLayer

lib/model/nns/layer/mtlu.js

Multibin trainable linear unit layer

new MultibinTrainableLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.b any (default 0)
$0.c any (default null)
$0.k any (default 10)
$0.rest ...any
config (object) config

NaturalLogarithmReLULayer

lib/model/nns/layer/nlrelu.js

Natural logarithm ReLU layer

new NaturalLogarithmReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 1)
$0.rest ...any
config (object) config

One-hot layer

new OnehotLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.class_size any (default null)
$0.values any (default [])
$0.rest ...any
config (object) config

Output layer

new OutputLayer()

Extends Layer

PadeActivationUnitLayer

lib/model/nns/layer/pau.js

Pade activation unit layer

new PadeActivationUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.m any (default 2)
$0.n any (default 2)
$0.a any (default 0.1)
$0.b any (default 0)
$0.rest ...any
config (object) config

ParametricDeformableELULayer

lib/model/nns/layer/pdelu.js

Parametric deformable ELU layer

new ParametricDeformableELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.t any (default 0.1)
$0.alpha any (default 1)
$0.rest ...any
config (object) config

ParametricELULayer

lib/model/nns/layer/pelu.js

Parametric ELU layer

new ParametricELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.b any (default 1)
$0.rest ...any
config (object) config

PiecewiseLinearUnitLayer

lib/model/nns/layer/plu.js

Piecewise linear unit layer

new PiecewiseLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 0.1)
$0.c any (default 1)
$0.rest ...any
config (object) config

ParametricReLULayer

lib/model/nns/layer/prelu.js

Parametric ReLU layer

new ParametricReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 0.25)
$0.rest ...any
config (object) config

ParametricRectifiedExponentialUnitLayer

lib/model/nns/layer/preu.js

Parametric rectified exponential unit layer

new ParametricRectifiedExponentialUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.beta any (default 1)
$0.rest ...any
config (object) config

Reduce product layer

new ProdLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

ParametricSigmoidFunctionLayer

lib/model/nns/layer/psf.js

Parametric sigmoid function layer

new ParametricSigmoidFunctionLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.m any (default 2)
$0.rest ...any
config (object) config

Penalized tanh layer

new PenalizedTanhLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 0.25)
$0.rest ...any
config (object) config

ParametricTanhLinearUnitLayer

lib/model/nns/layer/ptelu.js

Parametric tanh linear unit layer

new ParametricTanhLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.beta any (default 1)
$0.rest ...any
config (object) config

Random layer

new RandomLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.mean any (default 0)
$0.variance any (default 1)
$0.rest ...any
config (object) config

Reduce max layer

new ReduceMaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

Reduce min layer

new ReduceMinLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

RectifiedPowerUnitLayer

lib/model/nns/layer/repu.js

Rectified power unit layer

new RectifiedPowerUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.s any (default 2)
$0.rest ...any
config (object) config

Reshape layer

new ReshapeLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.rest ...any
config (object) config

Simple RNN layer

new RNNLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.out_size any (default null)
$0.activation any (default 'tanh')
$0.recurrent_activation any (default 'sigmoid')
$0.return_sequences any (default false)
$0.w_xh any (default null)
$0.w_hh any (default null)
$0.w_hy any (default null)
$0.b_xh any (default null)
$0.b_hh any (default null)
$0.b_hy any (default null)
$0.activation_params any (default {})
$0.recurrent_activation_params any (default {})
$0.rest ...any
config (object) object

RandomizedReLULayer

lib/model/nns/layer/rrelu.js

Randomized ReLU layer

new RandomizedReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.l any (default 1.0/8)
$0.u any (default 1.0/3)
$0.rest ...any
config (object) config

RandomTranslationReLULayer

lib/model/nns/layer/rtrelu.js

Random translation ReLU layer

new RandomTranslationReLULayer($0: Object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.rest ...any

Scaled ELU layer

new ScaledELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1.67326319217681884765625)
$0.g any (default 1.05070102214813232421875)
$0.rest ...any
config (object) config

Sigmoid layer

new SigmoidLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.rest ...any
config (object) config

SelfLearnableAFLayer

lib/model/nns/layer/slaf.js

Self learnable AF layer

new SelfLearnableAFLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.n any (default 3)
$0.a any (default 1)
$0.rest ...any
config (object) config

SoftplusLinearUnitLayer

lib/model/nns/layer/slu.js

Softplus linear unit layer

new SoftplusLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.beta any (default 1)
$0.gamma any (default 0)
$0.rest ...any
config (object) config

Soft shrink layer

new SoftShrinkLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.l any (default 0.5)
$0.rest ...any
config (object) config

Softargmax layer

new SoftargmaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 10000)
$0.rest ...any
config (object) config

Softmax layer

new SoftmaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.rest ...any
config (object) object

Softmin layer

new SoftminLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.rest ...any
config (object) object

Softplus layer

new SoftplusLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 1)
$0.rest ...any
config (object) config

Sparse layer

new SparseLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.rho any
$0.beta any
$0.rest ...any
config (object) config

Split layer

new SplitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default 1)
$0.size any
$0.rest ...any
config (object) config

Shifted ReLU layer

new ShiftedReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.d any (default 0)
$0.rest ...any
config (object) config

Soft root sign layer

new SoftRootSignLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 3)
$0.beta any (default 2)
$0.rest ...any
config (object) config

Scaled tanh layer

new ScaledTanhLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.b any (default 1)
$0.rest ...any
config (object) config

Standard deviation layer

new StdLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

Reduce sum layer

new SumLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

Supervisor layer

new SupervisorLayer()

Extends Layer

Swish layer

new SwishLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 1)
$0.rest ...any
config (object) config

Trainable AF layer

new TrainableAFLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 0)
$0.b any (default 0)
$0.rest ...any
config (object) config

Thresholded ReLU layer

new ThresholdedReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1.0)
$0.rest ...any
config (object) config

Transpose layer

new TransposeLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any
$0.rest ...any
config (object) config

Variable layer

new VariableLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.l2_decay any (default 0)
$0.l1_decay any (default 0)
$0.value any (default null)
$0.rest ...any
config (object) config

Variance layer

new VarLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

NiblackThresholding

lib/model/niblack.js

Niblack thresholding

new NiblackThresholding(n: number, k: number)
Parameters
n (number = 3) Size of local range
k (number = 0.1) Tuning parameter
Instance Members
predict(x)

Flow-based generative model non-linear independent component estimation

new NICE(layer_number: number, optimizer: string)
Parameters
layer_number (number) Number of layers
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(x, iteration, rate, batch_size)
predict(x)
generate(z)

Reverse layer

new ReverseLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default 1)
$0.rest ...any
config (object) config

Non-local means filter

new NLMeans(n: number, h: number)
Parameters
n (number) Manhattan distance of the pixel to the nearest neighbor
h (number) Degree of filtering
Instance Members
predict(x)

Non-negative matrix factorization

new NMF()
Instance Members
init(x, rd)
fit()
predict()

Natural Neighborhood Based Classification Algorithm

new NNBCA(metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
fit(datas, targets)
predict(datas)

Normal Herd

new NormalHERD(type: ("full" | "exact" | "project" | "drop"), c: number)
Parameters
type (("full" | "exact" | "project" | "drop") = exact) Method name
c (number = 0.1) Tradeoff value between passiveness and aggressiveness
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

One-class support vector machine

new OCSVM(nu: number, kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
nu (number) Nu
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(x)
fit()
predict(x)

Outlier Detection using Indegree Number

new ODIN(k: number, t: number)
Parameters
k (number = 5) Number of neighborhoods
t (number = 0) Indegree threshold
Instance Members
predict(data)

OnlineGradientDescent

lib/model/ogd.js

Online gradient descent

new OnlineGradientDescent(c: number, loss: "zero_one")
Parameters
c (number = 1) Tuning parameter
loss ("zero_one" = zero_one) Loss type name
Instance Members
update(x, y)
fit(x, y)
predict(data)

Ordering points to identify the clustering structure

new OPTICS(eps: number, minPts: number, metric: ("euclid" | "manhattan" | "chebyshev"))
Parameters
eps (number = Infinity) Radius to determine neighborhood
minPts (number = 5) Number of neighborhood with core distance
metric (("euclid" | "manhattan" | "chebyshev") = euclid) Metric name
Instance Members
fit(datas)
predict(threshold)

arbitrarily ORiented projected CLUSter generation

new ORCLUS(k: number, k0: number, l: number)
Parameters
k (number) Number of clusters
k0 (number) Number of begining seeds
l (number) Number of dimensions
Instance Members
fit(datas)
predict(datas)

OtsusThresholding

lib/model/otsu.js

Otus's thresholding

new OtsusThresholding()
Instance Members
predict(x)

Partitioning Around Medoids

new PAM(k: number)
Parameters
k (number) Number of clusters
Instance Members
init(datas)
fit()
predict()

Particle filter

new ParticleFilter()
Instance Members
fit(z)

Passing-Bablok method

new PassingBablok()
Instance Members
fit(x, y)
predict(x)

Passive Aggressive

new PA(v: (0 | 1 | 2))
Parameters
v ((0 | 1 | 2) = 0) Version number
Instance Members
update(x, y)
fit(x, y)
predict(data)

Perceptron Algorithm with Uneven Margins

new PAUM(rate: number, tp: number, tm: number)
Parameters
rate (number) Learning rate
tp (number) Margin parameter for +1
tm (number) Margin parameter for -1
Instance Members
fit(x, y)
predict(data)

Principal component analysis

new PCA()
Instance Members
fit(x)
predict(x, rd)

Dual Principal component analysis

new DualPCA()
Instance Members
fit(x)
predict(x, rd)

Kernel Principal component analysis

new KernelPCA(kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
fit(x)
predict(x, rd)

Principal component analysis for anomaly detection

new AnomalyPCA()

Extends PCA

Instance Members
fit(x)
predict(x)

PossibilisticCMeans

lib/model/pcm.js

Possibilistic c-means

new PossibilisticCMeans(m: number)
Parameters
m (number = 2) Fuzziness factor
Instance Members
init(datas)
add()
fit()
predict()

Principal component regression

new PCR()
Instance Members
fit(x, y)
predict(x)

Primal Estimated sub-GrAdientSOlver for SVM

new Pegasos(rate: number, k: number)
Parameters
rate (number) Learning rate
k (number = 1) Batch size
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

PercentileAnormaly

lib/model/percentile.js

Percentile anomaly detection

new PercentileAnormaly(percentile: number, distribution: ("data" | "normal"))
Parameters
percentile (number) Percentile value
distribution (("data" | "normal") = data) Distribution name
Instance Members
fit(data)
predict(x)

Perceptron

new Perceptron(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

AveragedPerceptron

lib/model/perceptron.js

Averaged perceptron

new AveragedPerceptron(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

MulticlassPerceptron

lib/model/perceptron.js

Multiclass perceptron

new MulticlassPerceptron(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

PhansalkarThresholding

lib/model/phansalkar.js

Phansalkar thresholding

new PhansalkarThresholding(n: number, k: number, r: number, p: number, q: number)
Parameters
n (number = 3) Size of local range
k (number = 0.25) Tuning parameter
r (number = 0.5) Tuning parameter
p (number = 2) Tuning parameter
q (number = 10) Tuning parameter
Instance Members
predict(x)

Partial least squares regression

new PLS(l: number)
Parameters
l (number) Limit on the number of latent factors
Instance Members
init(x, y)
fit()
predict(x)

Probabilistic latent semantic analysis

new PLSA(k: number)
Parameters
k (number = 2) Number of clusters
Instance Members
init(x)
fit()
predict()

PoissonRegression

lib/model/poisson.js

Poisson regression

new PoissonRegression(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(x)

Policy gradient agent

new PGAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
reset()
get_score()
get_action(state)
update(action, state, reward, done, learning_rate)

Polynomial histogram

new PolynomialHistogram(p: number, h: number)
Parameters
p (number = 2) Order
h (number = 0.1) Bin size
Instance Members
fit(x)
predict(x)

Polynomial interpolation

new PolynomialInterpolation()
Instance Members
fit(x, y)
predict(x)

ProjectionPursuit

lib/model/ppr.js

Projection pursuit regression

new ProjectionPursuit(r: number)
Parameters
r (number = 5) Number of functions
Instance Members
fit(x, y)
predict(x)

Prewitt edge detection

new Prewitt(th: number)
Parameters
th (number) Threshold
Instance Members
predict(x)

Priestley–Chao kernel estimator

new PriestleyChao(h: number)
Parameters
h (number) Smoothing parameter for the kernel
Instance Members
fit(x, y)
predict(x)

Principal curves

new PrincipalCurve()
Instance Members
fit(x)
predict()

Probabilistic Principal component analysis

new ProbabilisticPCA(method: ("analysis" | "em" | "bayes"), rd: number)
Parameters
method (("analysis" | "em" | "bayes") = analysis) Method name
rd (number) Reduced dimension
Instance Members
fit(x)
predict(x)
ProbabilityModel

Type: object

Properties
fit (function (Array<Array<number>>): void) : Fit model
probability (function (Array<Array<number>>): Array<number>) : Returns predicted values

Probability based classifier

new ProbabilityBasedClassifier(model: any)
Parameters
model (any)
Instance Members
fit(x, y)
predict(x)

Probit

new Probit()
Instance Members
init(train_x, train_y)
fit()
predict(data)

MultinomialProbit

lib/model/probit.js

Multinomial probit

new MultinomialProbit()

Extends Probit

Instance Members
fit(x, y)
predict(data)

PROjected CLUStering algorithm

new PROCLUS(k: number, a: number, b: number, l: number, minDeviation: number)
Parameters
k (number) Number of clusters
a (number) Number to multiply the number of clusters for sample size
b (number) Number to multiply the number of clusters for final set size
l (number) Average dimensions
minDeviation (number = 0.1) Minimum deviation to check the medoid is bad
Instance Members
init(datas)
fit()
predict()
outliers()

Projectron

new Projectron(eta: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
eta (number = 0) Threshold
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Projectron++

new Projectronpp(eta: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
eta (number = 0) Threshold
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

P-tile thresholding

new PTile(p: number)
Parameters
p (number = 0.5) Percentile value
Instance Members
predict(x)

Base class for Q-table

new QTableBase(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
tensor
states
actions
resolution
toArray()
best_action(state)

Q-learning agent

new QAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
get_score()
get_action(state, greedy_rate)
update(action, state, next_state, reward)

Quadratic discriminant analysis

new QuadraticDiscriminant()
Instance Members
fit(x, y)
predict(data)

Quantile regression

new QuantileRegression(tau: number)
Parameters
tau (number = 0.5) Quantile value
Instance Members
fit(x, y, learningRate)
predict(x)

Bsae class for radius neighbor models

new RadiusNeighborBase(r: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
r (number = 1) Radius to determine neighborhood
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
_add(point, category?)

radius neighbor

new RadiusNeighbor(r: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends RadiusNeighborBase

Parameters
r (number = 1) Radius to determine neighborhood
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

RadiusNeighborRegression

lib/model/radius_neighbor.js

radius neighbor regression

new RadiusNeighborRegression(r: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends RadiusNeighborBase

Parameters
r (number = 1) Radius to determine neighborhood
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

SemiSupervisedRadiusNeighbor

lib/model/radius_neighbor.js

Semi-supervised radius neighbor

new SemiSupervisedRadiusNeighbor(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends RadiusNeighborBase

Parameters
k (number = 5) Radius to determine neighborhood
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict()

Ramer-Douglas-Peucker algorithm

new RamerDouglasPeucker(e: number)
Parameters
e (number = 0.1) Threshold of distance
Instance Members
fit(x, y)
predict(x)

Bsae class for random forest models

new RandomForest(tree_num: number, sampling_rate: number, tree_class: (DecisionTreeClassifier | DecisionTreeRegression), tree_class_args: Array<any>?)
Parameters
tree_num (number) Number of trees
sampling_rate (number = 0.8) Sampling rate
tree_class_args (Array<any>? = null) Arguments for constructor of tree class
Instance Members
depth
init(datas, targets)
fit()
predict_prob(datas)

RandomForestClassifier

lib/model/random_forest.js

Random forest classifier

new RandomForestClassifier(tree_num: number, sampling_rate: number, method: ("ID3" | "CART"))

Extends RandomForest

Parameters
tree_num (number) Number of trees
sampling_rate (number = 0.8) Sampling rate
method (("ID3" | "CART") = CART) Method name
Instance Members
predict(datas)

RandomForestRegressor

lib/model/random_forest.js

Random forest regressor

new RandomForestRegressor(tree_num: number, sampling_rate: number)

Extends RandomForest

Parameters
tree_num (number) Number of trees
sampling_rate (number = 0.8) Sampling rate
Instance Members
predict(datas)

Random projection

new RandomProjection(init: ("uniform" | "root3" | "normal"))
Parameters
init (("uniform" | "root3" | "normal") = uniform) Initialize method name
Instance Members
predict(x, rd)

RANSACSubModel

lib/model/ransac.js
RANSACSubModel

Type: object

Properties
fit (function (Array<Array<number>>, Array<any>): void) : Fit model
predict (function (Array<Array<number>>): Array<any>) : Returns predicted values
score (function (Array<any>, Array<any>): number?) : Returns a number how accurate the prediction is

Random sample consensus

new RANSAC(model: any, sample: (number | null))
Parameters
model (any)
sample ((number | null) = null) Sampling rate
Instance Members
fit(x, y)
predict(x)

RadialBasisFunctionNetwork

lib/model/rbf.js

Radial basis function network

new RadialBasisFunctionNetwork(rbf: ("linear" | "gaussian" | "multiquadric" | "inverse quadratic" | "inverse multiquadric" | "thin plate" | "bump"), e: number, l: number)
Parameters
rbf (("linear" | "gaussian" | "multiquadric" | "inverse quadratic" | "inverse multiquadric" | "thin plate" | "bump") = linear) RBF name
e (number = 1) Tuning parameter
l (number = 0) Regularization parameter
Instance Members
fit(x, y)
predict(target)

Restricted Boltzmann machine

new RBM(hiddenSize: number, lr: number)
Parameters
hiddenSize (number) Size of hidden layer
lr (number = 0.01) Learning rate
Instance Members
fit(x)
energy(v, h)
predict(x)

Gaussian-Bernouili Restricted Boltzmann machine

new GBRBM(hiddenSize: number, lr: number, fixSigma: boolean)
Parameters
hiddenSize (number) Size of hidden layer
lr (number = 0.01) Learning rate
fixSigma (boolean = false) Do not learn sigma or not
Instance Members
fit(x)
energy(v, h)
predict(x)

Randomized Budget Perceptron

new RBP(b: number)
Parameters
b (number) Number of support vectors
Instance Members
fit(x, y)
predict(data)

Relative Density Factor

new RDF(r: number)
Parameters
r (number = 1.0) Radius
Instance Members
predict(datas)

Relative Density-based Outlier Score

new RDOS(k: number, h: number, kernel: ("gaussian" | function (Array<number>): number))
Parameters
k (number) Number of neighborhoods
h (number) Kernel width
kernel (("gaussian" | function (Array<number>): number) = gaussian) Kernel name
Instance Members
predict(datas)

Ridge regressioin

new Ridge(lambda: number)
Parameters
lambda (number = 0.1) Regularization strength
Instance Members
fit(x, y)
predict(x)
importance()

Kernel ridge regression

new KernelRidge(lambda: number, kernel: ("gaussian" | function (Array<number>, Array<number>): number))
Parameters
lambda (number = 0.1) Regularization strength
kernel (("gaussian" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(x)
importance()

Robust Kernel-based Outlier Factor

new RKOF(k: number, h: number, alpha: number, kernel: ("gaussian" | "epanechnikov" | "volcano" | function (Array<number>): number))
Parameters
k (number) Number of neighborhoods
h (number) Smoothing parameter
alpha (number) Sensitivity parameter
kernel (("gaussian" | "epanechnikov" | "volcano" | function (Array<number>): number) = gaussian) Kernel name
Instance Members
predict(datas)

RecursiveLeastSquares

lib/model/rls.js

Recursive least squares

new RecursiveLeastSquares()
Instance Members
update(x, y)
fit(x, y)
predict(data)

RepeatedMedianRegression

lib/model/rmr.js

Repeated median regression

new RepeatedMedianRegression()
Instance Members
fit(x, y)
predict(x)

Recurrent neuralnetwork

new RNN(method: ("rnn" | "lstm" | "gru"), window: number, unit: number, out_size: number, optimizer: string)
Parameters
method (("rnn" | "lstm" | "gru") = lstm) Method name
window (number = 10) Window size
unit (number = 10) Size of recurrent unit
out_size (number = 1) Output size
optimizer (string = adam) Optimizer of the network
Instance Members
method
epoch
fit(train_x, train_y, iteration, rate, batch)
predict(data, k)

Roberts cross

new RobertsCross(th: number)
Parameters
th (number) Threshold
Instance Members
predict(x)

Robust scaler

new RobustScaler()
Instance Members
fit(x)
predict(x)
ROCKNode

Type: object

Properties
point (Array<number>?) : Data point of leaf node
index (number?) : Data index of leaf node
g (number) : Number of leaf nodes
distance (number?) : Distance between children nodes
children (Array<ROCKNode>?) : Children nodes
leafs (Array<ROCKNode>) : Leaf nodes

RObust Clustering using linKs

new ROCK(th: number)
Parameters
th (number) Threshold
Instance Members
fit(data)
getClusters(number)
predict(k)

Relaxed Online Maximum Margin Algorithm

new ROMMA()
Instance Members
update(x, y)
fit(x, y)
predict(data)

AggressiveROMMA

lib/model/romma.js

Aggressive Relaxed Online Maximum Margin Algorithm

new AggressiveROMMA()

Extends ROMMA

Relevance vector machine

new RVM()
Instance Members
fit(x, y)
predict(x)

Semi-Supervised Support Vector Machine

new S3VM(kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(x, y)
fit()
predict(data)

Sammon mapping

new Sammon(x: Array<Array<number>>, rd: number)
Parameters
x (Array<Array<number>>) Sample data
rd (number) Reduced dimension
Instance Members
fit()
predict()

SARSA agent

new SARSAAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
reset()
get_score()
get_action(state, greedy_rate)
update(action, state, next_state, reward)

SauvolaThresholding

lib/model/sauvola.js

sauvola thresholding

new SauvolaThresholding(n: number, k: number, r: number)
Parameters
n (number = 3) Size of local range
k (number = 0.1) Tuning parameter
r (number = 1) Tuning parameter
Instance Members
predict(x)

SavitzkyGolayFilter

lib/model/savitzky_golay.js

Savitzky-Golay filter

new SavitzkyGolayFilter(k: number)
Parameters
k (number) Number of coefficients
Instance Members
predict(x)

Sequentially Discounting Autoregressive model

new SDAR(p: number, r: number)
Deprecated: Does not work properly
Parameters
p (number = 1) Order
r (number = 0.8) Forgetting factor
Instance Members
probability(data)
predict(data, k)

SegmentedRegression

lib/model/segmented.js

Segmented regression

new SegmentedRegression(seg: number)
Parameters
seg (number = 3) Number of segments
Instance Members
fit(x, y)
predict(x)

Selective Naive bayes

new SelectiveNaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
predict(data)

Selective sampling Perceptron

new SelectiveSamplingPerceptron(b: number, rate: number)
Parameters
b (number) Smooth parameter
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

SelectiveSamplingAdaptivePerceptron

lib/model/selective_sampling_perceptron.js

Selective sampling Perceptron with adaptive parameter

new SelectiveSamplingAdaptivePerceptron(beta: number, rate: number)
Parameters
beta (number) Smooth parameter
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

Selective sampling second-order Perceptron

new SelectiveSamplingSOP(b: number)
Parameters
b (number) Smooth parameter
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Selective sampling Winnow

new SelectiveSamplingWinnow(b: number, alpha: boolean)
Parameters
b (number) Smooth parameter
alpha (boolean = 2) Learning rate
Instance Members
fit(x, y)
predict(data)

Self-training

new SelfTraining(model: object, threshold: number)
Parameters
model (object) View
threshold (number) Threshold
Instance Members
init(x, y)
fit()
predict()

Semi-supervised naive bayes

new SemiSupervisedNaiveBayes(lambda: number)
Parameters
lambda (number = 1) Weight applied to the contribution of the unlabeled data
Instance Members
init(datas, labels)
probability(datas)
logLikelihood()
predict(datas)

SezanThresholding

lib/model/sezan.js

Sezan's thresholding

new SezanThresholding(gamma: number, sigma: number)
Parameters
gamma (number = 0.5) Tradeoff value between black and white
sigma (number = 5) Sigma of normal distribution
Instance Members
predict(x)

Shifting Perceptron Algorithm

new ShiftingPerceptron(lambda: number)
Parameters
lambda (number) Rate of weight decay
Instance Members
fit(x, y)
predict(data)

Implicit online Learning with Kernels

new ILK(eta: number, lambda: number, c: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), loss: ("square" | "hinge" | "logistic"))
Parameters
eta (number = 1) Learning rate
lambda (number = 1) Regularization constant
c (number = 1) Penalty imposed on point prediction violations.
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
loss (("square" | "hinge" | "logistic") = hinge) Loss type name
Instance Members
update(x, y)
fit(x, y)
predict(data)

Sparse Implicit online Learning with Kernels

new SILK(eta: number, lambda: number, c: number, w: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), loss: ("square" | "hinge" | "graph" | "logistic"))

Extends ILK

Parameters
eta (number = 1) Learning rate
lambda (number = 1) Regularization constant
c (number = 1) Penalty imposed on point prediction violations.
w (number = 10) Buffer size
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
loss (("square" | "hinge" | "graph" | "logistic") = hinge) Loss type name
Instance Members
update(x, y)

Sinc interpolation

new SincInterpolation()
Instance Members
fit(values)
predict(index)

SlicedInverseRegression

lib/model/sir.js

Sliced inverse regression

new SlicedInverseRegression(s: number)
Parameters
s (number) Number of slices
Instance Members
predict(x, y, rd)

Spherical linear interpolation

new Slerp(o: number)
Parameters
o (number = 1) Angle subtended by the arc
Instance Members
fit(x, y)
predict(target)

slice sampling

new SliceSampling(targetFunc: function (Array<number>): number, d: number, w: number)
Parameters
targetFunc (function (Array<number>): number) Target distribution
d (number) Output size
w (number = 1.0) Check width
Instance Members
sample(n)

SMARegression

lib/model/sma.js

Standardizes Major Axis regression

new SMARegression()
Instance Members
fit(x, y)
predict(x)

SmirnovGrubbs test

new SmirnovGrubbs(alpha: number)
Parameters
alpha (number) Significance level
Instance Members
predict(data)

SmoothstepInterpolation

lib/model/smoothstep.js

Smoothstep interpolation

new SmoothstepInterpolation(n: number)
Parameters
n (number = 1) Order
Instance Members
fit(x, y)
predict(target)

Snakes (active contour model)

new Snakes(alpha: number, beta: number, gamma: number, k: number)
Parameters
alpha (number) Penalty for length
beta (number) Penalty for curvature
gamma (number) Penalty for conformity with image
k (number = 100) Number of vertices
Instance Members
init(x)
fit()
predict()

Sobel edge detection

new Sobel(th: number)
Parameters
th (number) Threshold
Instance Members
predict(x)

Soft k-means

new SoftKMeans(beta: number)
Parameters
beta (number = 1) Tuning parameter
Instance Members
init(datas)
add()
fit()
predict()

Self-Organizing Map

new SOM(input_size: number, output_size: number, resolution: number)
Parameters
input_size (number) Input size
output_size (number) Output size
resolution (number = 20) Resolution of output
Instance Members
fit(data)
predict(x)

SecondOrderPerceptron

lib/model/sop.js

Second order perceptron

new SecondOrderPerceptron(a: number)
Parameters
a (number = 1) Tuning parameter
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

SpectralClustering

lib/model/spectral.js

Spectral clustering

new SpectralClustering(affinity: ("rbf" | "knn"), param: object)
Parameters
affinity (("rbf" | "knn") = rbf) Affinity type name
param (object = {}) Config
Instance Members
size
epoch
init(datas)
add()
clear()
predict()
fit()

SmoothingSpline

lib/model/spline.js

Spline smoothing

new SmoothingSpline(l: number)
Parameters
l (number) Smoothing parameter
Instance Members
fit(x, y)
predict(data)

Spline interpolation

new SplineInterpolation()
Instance Members
fit(x, y)
predict(target)

Split and merge segmentation

new SplitAndMerge(method: ("variance" | "uniformity"), threshold: number)
Parameters
method (("variance" | "uniformity") = variance) Method name
threshold (number = 0.1) Threshold
Instance Members
predict(x)

Squared-loss Mutual information change point detection

new SquaredLossMICPD(model: object, w: number, take: number?, lag: number?)
Parameters
model (object) Density ratio estimation model
w (number) Window size
take (number?) Take number
lag (number?) Lag
Instance Members
predict(datas)

Singular-spectrum transformation

new SST(w: number, take: number?, lag: number?)
Parameters
w (number) Window size
take (number?) Take number
lag (number?) Lag
Instance Members
predict(datas)

Standardization

new Standardization(ddof: number)
Parameters
ddof (number = 0) Delta Degrees of Freedom
Instance Members
fit(x)
predict(x)

Statistical Region Merging

new StatisticalRegionMerging(t: number)
Parameters
t (number) Threshold
Instance Members
predict(x)

STatistical INformation Grid-based method

new STING()
Deprecated: Not implemented
Instance Members
fit(datas)
predict(datas)

Stoptron

new Stoptron(n: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
n (number = 10) Cachs size
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Support vector clustering

new SVC(kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
size
init(x)
fit()
predict()

Support vector machine

new SVM(kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(train_x, train_y)
fit()
predict(data)

Support vector regression

new SVR(kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(x, y)
fit()
predict(x)

TheilSenRegression

lib/model/theil_sen.js

Theil-Sen regression

new TheilSenRegression()
Instance Members
fit(x, y)
predict(x)

Thompson test

new Thompson(alpha: number)
Parameters
alpha (number) Significance level
Instance Members
predict(data)

Tietjen-Moore Test

new TietjenMoore(k: number)
Parameters
k (number) Number of outliers
Instance Members
predict(data, threshold)

Tighter Budget Perceptron

new TighterPerceptron(beta: number, p: number, update: ("perceptron" | "mira" | "nobias"))
Parameters
beta (number = 0) Margine
p (number = 0) Cachs size
update (("perceptron" | "mira" | "nobias") = perceptron) Update rule
Instance Members
fit(x, y)
predict(data)

Tightest Perceptron

new TightestPerceptron(b: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), accuracyLoss: ("zero_one" | "hinge"))
Parameters
b (number = 10) Budget size
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
accuracyLoss (("zero_one" | "hinge") = hinge) Accuracy loss type name
Instance Members
fit(x, y)
predict(data)

Trigonometric interpolation

new TrigonometricInterpolation()
Instance Members
fit(x, y)
predict(target)

Stochastic Neighbor Embedding

new SNE(datas: Array<Array<number>>, rd: number, perplexity: number)
Parameters
datas (Array<Array<number>>) Training data
rd (number = 1) Reduced dimension
perplexity (number = 30) Perplexity
Instance Members
fit()
predict()

T-distributed Stochastic Neighbor Embedding

new tSNE(datas: Array<Array<number>>, rd: number, perplexity: number)
Parameters
datas (Array<Array<number>>) Training data
rd (number = 1) Reduced dimension
perplexity (number = 30) Perplexity
Instance Members
fit()
predict()

Tukey regression

new TukeyRegression(e: number)
Parameters
e (number) Error tolerance
Instance Members
fit(x, y)
predict(x)

Tukey's fences

new TukeysFences(k: number)
Parameters
k (number) Tuning parameter
Instance Members
predict(data)

Relative unconstrained Least-Squares Importance Fitting

new RuLSIF(sigma: Array<number>, lambda: Array<number>, alpha: number, kernelNum: number)
Parameters
sigma (Array<number>) Sigmas of normal distribution
lambda (Array<number>) Regularization parameters
alpha (number) Relative parameter
kernelNum (number) Number of kernels
Instance Members
fit(x1, x2)
predict(x)

unconstrained Least-Squares Importance Fitting

new uLSIF(sigma: Array<number>, lambda: Array<number>, kernelNum: number)

Extends RuLSIF

Parameters
sigma (Array<number>) Sigma of normal distribution
lambda (Array<number>) Regularization parameters
kernelNum (number) Number of kernels

Uniform Manifold Approximation and Projection

new UMAP(datas: Array<Array<number>>, rd: number, n: number, min_dist: number)
Parameters
datas (Array<Array<number>>) Training data
rd (number) Reduced dimension
n (number = 10) Number of neighborhoods
min_dist (number = 0.1) Minimum distance
Instance Members
fit()
predict()

Universal-set Naive bayes

new UniversalSetNaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
predict(data)

Variational Autoencoder

new VAE(in_size: number, noise_dim: number, enc_layers: Array<Object<string, any>>, dec_layers: Array<Object<string, any>>, optimizer: string, class_size: (number | null), type: ("" | "conditional"))
Parameters
in_size (number) Input size
noise_dim (number) Number of noise dimension
enc_layers (Array<Object<string, any>>) Layers of encoder
dec_layers (Array<Object<string, any>>) Layers of decoder
optimizer (string) Optimizer of the network
class_size ((number | null)) Class size for conditional type
type (("" | "conditional")) Type name
Instance Members
epoch
fit(x, y, iteration, rate, batch)
predict(x, y)
reduce(x, y)

Vector Autoregressive model

new VAR(p: number)
Parameters
p (number) Order
Instance Members
fit(data)
predict(data, k)

Variational Gaussian Mixture Model

new VBGMM(a: number, b: number, k: number)
Parameters
a (number) Tuning parameter
b (number) Tuning parameter
k (number) Initial number of clusters
Instance Members
means
covs
effectivity
init(datas)
fit()
probability(data)
predict(data)

Voted-perceptron

new VotedPerceptron(rate: number)
Parameters
rate (number = 1) Learning rate
Instance Members
fit(x, y)
predict(data)

Weighted k-means model

new WeightedKMeans(beta: number)
Parameters
beta (number) Tuning parameter
Instance Members
centroids
size
add(datas)
clear()
predict(datas)
fit(datas)

Weighted K-Nearest Neighbor

new WeightedKNN(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"), weight: ("gaussian" | "rectangular" | "triangular" | "epanechnikov" | "quartic" | "triweight" | "cosine" | "inversion"))
Parameters
k (number) Number of neighbors
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
weight (("gaussian" | "rectangular" | "triangular" | "epanechnikov" | "quartic" | "triweight" | "cosine" | "inversion") = gaussian) Weighting scheme name
Instance Members
fit(x, y)
predict(data)

Weighted least squares

new WeightedLeastSquares()
Instance Members
fit(x, y, w)
predict(x)

Winnow

new Winnow(alpha: boolean, threshold: number?, version: (1 | 2))
Parameters
alpha (boolean = 2) Learning rate
threshold (number? = null) Threshold
version ((1 | 2) = 1) Version of model
Instance Members
fit(x, y)
predict(data)

Word2Vec

new Word2Vec(method: ("CBOW" | "skip-gram"), n: number, wordsOrNumber: (number | Array<string>), reduce_size: number, optimizer: string)
Parameters
method (("CBOW" | "skip-gram")) Method name
n (number) Number of how many adjacent words to learn
wordsOrNumber ((number | Array<string>)) Initial words or number of words
reduce_size (number) Reduced dimension
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(words, iteration, rate, batch)
predict(x)
reduce(x)

eXtreme Gradient Boosting regression

new XGBoost(maxdepth: number, srate: number, lambda: number, lr: number)
Parameters
maxdepth (number = 1) Maximum depth of tree
srate (number = 1.0) Sampling rate
lambda (number = 0.1) Regularization parameter
lr (number = 0.5) Learning rate
Instance Members
size
init(x, y)
fit()
predict(x)

XGBoostClassifier

lib/model/xgboost.js

eXtreme Gradient Boosting classifier

new XGBoostClassifier(maxdepth: number, srate: number, lambda: number, lr: number)

Extends XGBoost

Parameters
maxdepth (number = 1) Maximum depth of tree
srate (number = 1.0) Sampling rate
lambda (number = 0.1) Regularization parameter
lr (number = 0) Learning rate
Instance Members
init(x, y)
predict(x)

x-means

new XMeans()
Instance Members
centroids
size
clear()
fit(datas, iterations)
predict(datas)

Yeo-Johnson power transformation

new YeoJohnson(lambda: number?)
Parameters
lambda (number? = null) Lambda
Instance Members
fit(x)
predict(x)

ZeroInflatedPoisson

lib/model/zip.js

Zero-inflated poisson

new ZeroInflatedPoisson()
Instance Members
fit(x)
probability(x)

ZeroTruncatedPoisson

lib/model/ztp.js

Zero-truncated poisson

new ZeroTruncatedPoisson()
Instance Members
fit(x)
probability(x)

AcrobotRLEnvironment

lib/rl/acrobot.js

Acrobot environment

new AcrobotRLEnvironment()

Extends RLEnvironmentBase

RLRealRange

lib/rl/base.js

Real number range state/actioin

new RLRealRange(min: number, max: number)
Parameters
min (number) Minimum value
max (number) Maximum value
Instance Members
toSpace(resolution)
toArray(resolution)
indexOf(value, resolution)

RLIntRange

lib/rl/base.js

Integer number range state/actioin

new RLIntRange(min: number, max: number)
Parameters
min (number) Minimum value
max (number) Maximum value
Instance Members
length
toArray(resolution)
indexOf(value, resolution)

RLEnvironmentBase

lib/rl/base.js

Base class for reinforcement learning environment

new RLEnvironmentBase()
Properties
actions (Array<(Array<any> | RLRealRange | RLIntRange)>) : Action variables
states (Array<(Array<any> | RLRealRange | RLIntRange)>) : States variables
Instance Members
epoch
reward
clone()
close()
reset()
state(agent)
setState(state, agent)
step(action, agent)
test(state, action, agent)
sample_action(agent)

EmptyRLEnvironment

lib/rl/base.js

Empty environment

new EmptyRLEnvironment()

Extends RLEnvironmentBase

BlackjackRLEnvironment

lib/rl/blackjack.js

Blackjack environment

new BlackjackRLEnvironment()

Extends RLEnvironmentBase

BreakerRLEnvironment

lib/rl/breaker.js

Breaker environment

new BreakerRLEnvironment()

Extends RLEnvironmentBase

CartPoleRLEnvironment

lib/rl/cartpole.js

Cartpole environment

new CartPoleRLEnvironment()

Extends RLEnvironmentBase

DraughtsRLEnvironment

lib/rl/draughts.js

Draughts environment

new DraughtsRLEnvironment()

Extends RLEnvironmentBase

GomokuRLEnvironment

lib/rl/gomoku.js

Gomoku environment

new GomokuRLEnvironment()

Extends RLEnvironmentBase

GridMazeRLEnvironment

lib/rl/grid.js

Grid world environment

new GridMazeRLEnvironment()

Extends RLEnvironmentBase

InHypercubeRLEnvironment

lib/rl/inhypercube.js

In-hypercube environment

new InHypercubeRLEnvironment(d: number)

Extends RLEnvironmentBase

Parameters
d (number = 2) Dimension of the environment

SmoothMazeRLEnvironment

lib/rl/maze.js

Smooth maze environment

new SmoothMazeRLEnvironment(width: number, height: number)

Extends RLEnvironmentBase

Parameters
width (number) Area width
height (number) Area height

MountainCarRLEnvironment

lib/rl/mountaincar.js

MountainCar environment

new MountainCarRLEnvironment()

Extends RLEnvironmentBase

PendulumRLEnvironment

lib/rl/pendulum.js

Pendulum environment

new PendulumRLEnvironment()

Extends RLEnvironmentBase

ReversiRLEnvironment

lib/rl/reversi.js

Reversi environment

new ReversiRLEnvironment()

Extends RLEnvironmentBase

WaterballRLEnvironment

lib/rl/waterball.js

Waterball environment

new WaterballRLEnvironment(width: number, height: number)

Extends RLEnvironmentBase

Parameters
width (number) Area width
height (number) Area height

Returns accuracy.

accuracy(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
Returns
number: Accuracy

Returns precision with macro average.

precision(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
Returns
number: Precision

Returns recall with macro average.

recall(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
Returns
number: Recall

Returns F-score with macro average.

fScore(pred: Array<any>, t: Array<any>, beta: number): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
beta (number = 1) Positive real factor. Recall is considered beta times as important as precision.
Returns
number: F-score

Returns Cohen's kappa coefficient.

cohensKappa(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
Returns
number: Cohen's kappa coefficient

Returns Davies-Bouldin index.

davisBouldinIndex(data: Array<Array<number>>, pred: Array<any>, p: number, q: number): number
Parameters
data (Array<Array<number>>) Original data
pred (Array<any>) Predicted categories
p (number = 2) P
q (number = 1) Q
Returns
number: Davies-Bouldin index

silhouetteCoefficient

lib/evaluate/clustering.js

Returns Silhouette coefficient.

silhouetteCoefficient(data: Array<Array<number>>, pred: Array<any>): Array<number>
Parameters
data (Array<Array<number>>) Original data
pred (Array<any>) Predicted categories
Returns
Array<number>: Silhouette coefficient

Returns Dunn index.

dunnIndex(data: Array<Array<number>>, pred: Array<any>, intra_d: ("max" | "mean" | "centroid"), inter_d: "centroid"): number
Parameters
data (Array<Array<number>>) Original data
pred (Array<any>) Predicted categories
intra_d (("max" | "mean" | "centroid") = 'max') Intra-cluster distance type
inter_d ("centroid" = 'centroid') Inter-cluster distance type
Returns
number: Dunn index

Returns Purity.

purity(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
Returns
number: Purity

Returns Rand index.

randIndex(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
Returns
number: Rank index

Returns Dice index.

diceIndex(pred: Array<any>, t: Array<any>, beta: number): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
beta (number = 1) Positive real factor. Recall is considered beta times as important as precision.
Returns
number: Dice index

Returns Jaccard index.

jaccardIndex(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
Returns
number: Jaccard index

fowlkesMallowsIndex

lib/evaluate/clustering.js

Returns Fowlkes-Mallows index.

fowlkesMallowsIndex(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
Returns
number: Fowlkes-Mallows index

Returns Co-Ranking Matrix.

coRankingMatrix(x: Array<Array<number>>, z: Array<Array<number>>, ks: number, kt: number): number
Parameters
x (Array<Array<number>>) Reduced values
z (Array<Array<number>>) Original values
ks (number) Rank significance
kt (number) Failure tolerance
Returns
number: Co-Ranking Matrix value

Returns MSE (Mean Squared Error).

Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Mean Squared Error

Returns RMSE (Root Mean Squared Error).

rmse(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Root Mean Squared Error

Returns MAE (Mean Absolute Error).

Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Mean Absolute Error

Returns MAD (Median Absolute Deviation).

Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Median Absolute Deviation

Returns RMSPE (Root Mean Squared Percentage Error).

rmspe(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Root Mean Squared Percentage Error

Returns MAPE (Mean Absolute Percentage Error).

mape(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Mean Absolute Percentage Error

Returns MSLE (Mean Squared Logarithmic Error).

msle(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Mean Squared Logarithmic Error

Returns RMSLE (Root Mean Squared Logarithmic Error).

rmsle(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): RootMean Squared Logarithmic Error

Returns R2 (coefficient of determination).

Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Coefficient of determination

Returns correlation.

correlation(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Correlation
\ No newline at end of file +@ai-on-browser/data-analysis-models 0.17.0 | Documentation

@ai-on-browser/data-analysis-models

0.17.0

Default export object.

default
Properties
Tensor (Tensor) : Tensor class
Matrix (Matrix) : Matrix class
Graph (Graph) : Graph class
Complex (Complex) : Complex number
Static Members
models
rl
evaluate

MatrixException

lib/util/matrix.js

Exception for matrix class

new MatrixException(message: string, value: any)

Extends Error

Parameters
message (string) Error message
value (any) Some value

Matrix class

new Matrix(rows: number, cols: number, values: (number | Array<number> | Array<Array<number>>)?)
Parameters
rows (number) Number of rows
cols (number) Number of columns
values ((number | Array<number> | Array<Array<number>>)?) Initial values
Static Members
zeros(rows, cols)
ones(rows, cols)
eye(rows, cols, init)
random(rows, cols, min, max)
randint(rows, cols, min, max)
randn(rows, cols, myu, sigma)
diag(d)
fromArray(arr)
map(mat, cb)
resize(mat, rows, cols, init)
repeat(mat, n, axis)
concat(a, b, axis)
add(a, b)
sub(a, b)
mult(a, b)
div(a, b)
mod(a, b)
and(a, b)
or(a, b)
bitand(a, b)
bitor(a, b)
bitxor(a, b)
Instance Members
dimension
sizes
length
rows
cols
value
t
iterator()
toArray()
toScaler()
toString()
copy(dst?)
equals(other, tol)
at(r, c?)
set(r, c, value?)
row(r)
col(c)
slice(from, to, axis)
block(rows_from, cols_from, rows_to?, cols_to?)
remove(idx, axis)
removeIf(cond, axis)
sample(n, axis)
fill(value)
map(cb)
forEach(cb)
transpose()
adjoint()
flip(axis)
swap(a, b, axis)
sort(axis)
shuffle(axis)
unique(axis, tol)
resize(rows, cols, init)
reshape(rows, cols)
repeat(n, axis)
concat(m, axis)
reduce(cb, init?, axis, keepdims)
every(cb, axis)
some(cb, axis)
max(axis)
min(axis)
median(axis)
quantile(q, axis)
argmax(axis)
argmin(axis)
sum(axis)
mean(axis)
prod(axis)
variance(axis, ddof)
std(axis, ddof)
isSquare()
isDiag(tol)
isIdentity(tol)
isZero(tol)
isTriangular(tol)
isLowerTriangular(tol)
isUpperTriangular(tol)
isSymmetric(tol)
isHermitian(tol)
isAlternating(tol)
isSkewHermitian(tol)
isRegular(tol)
isNormal(tol)
isOrthogonal(tol)
isUnitary(tol)
isNilpotent(tol)
diag()
trace()
norm(p)
normInduced(p)
normSpectral()
normEntrywise(p)
normFrobenius()
normMax()
normSchatten(p)
normNuclear()
rank(tol)
det()
negative()
not()
bitnot()
abs()
round()
floor()
ceil()
leftShift(n)
signedRightShift(n)
unsignedRightShift(n)
broadcastOperate(o, fn)
operateAt(r, c, fn?)
add(o)
addAt(r, c, v)
sub(o)
isub(o)
subAt(r, c, v)
isubAt(r, c, v)
mult(o)
multAt(r, c, v)
div(o)
idiv(o)
divAt(r, c, v)
idivAt(r, c, v)
mod(o)
imod(o)
modAt(r, c, v)
imodAt(r, c, v)
and(o)
andAt(r, c, v)
or(o)
orAt(r, c, v)
bitand(o)
bitandAt(r, c, v)
bitor(o)
bitorAt(r, c, v)
bitxor(o)
bitxorAt(r, c, v)
dot(o)
tDot(o)
kron(mat)
convolute(kernel, normalize)
reducedRowEchelonForm(tol)
inv()
invLowerTriangular()
invUpperTriangular()
invRowReduction()
invLU()
pseudoInv()
pseudoInvNaive()
pseudoInvQR()
pseudoInvSVD()
pseudoInvBenIsraelCohen()
sqrt()
power(p)
exp()
log()
cov(ddof)
gram()
solve(b)
solveLowerTriangular(b)
solveUpperTriangular(b)
bidiag()
bidiagHouseholder(return_uv)
tridiag()
tridiagHouseholder(return_u)
tridiagLanczos(k)
hessenberg()
hessenbergArnoldi(k)
lu()
qr()
qrGramSchmidt()
qrHouseholder()
singularValues()
svd()
svdEigen()
svdGolubKahan()
cholesky()
choleskyGaussian()
choleskyBanachiewicz()
choleskyCrout()
modifiedCholesky()
schur()
schurQR(shift)
rankFactorization()
eigen()
eigenValues()
eigenVectors()
eigenValuesBiSection()
eigenValuesLR()
eigenValuesQR()
eigenJacobi(maxIteration)
eigenPowerIteration()
eigenInverseIteration(ev)

Tensor class

new Tensor(size: Array<number>, value: (number | Array<number>)?)
Parameters
size (Array<number>) Sizes for each dimension
value ((number | Array<number>)?) Initial values
Static Members
zeros(size)
ones(size)
random(size, min, max)
randn(size, myu, sigma)
fromArray(arr)
Instance Members
dimension
sizes
length
value
iterator()
toArray()
toString()
toMatrix()
toScaler()
copy()
equals(other)
at(i)
set(i, value)
select(idx, axis)
slice(from, to, axis)
fill(value)
map(cb)
forEach(cb)
transpose(axises)
flip(axis)
shuffle(axis)
resize(sizes, init)
reshape(sizes)
repeat(n, axis)
concat(t, axis)
reduce(cb, init?, axis, keepdims)
broadcastOperate(o, fn)
operateAt(i, fn?)
dot(o)

GraphException

lib/util/graph.js

Exception for graph class

new GraphException(message: string, value: any)

Extends Error

Parameters
message (string) Error message
value (any) Some value

Edge of graph

new Edge(from: number, to: number, value: unknown, direct: boolean)
Parameters
from (number) Index of the starting node of the edge
to (number) Index of the end node of the edge
value (unknown = null) Value of the edge
direct (boolean = false) true if the edge is direct

Graph class

new Graph(nodes: (number | Array<unknown>), edges: any)
Parameters
nodes ((number | Array<unknown>) = 0) Number of nodes or values of nodes
edges (any = [])
Static Members
fromAdjacency(mat)
complete(n)
completeBipartite(n, m)
cycle(n, direct)
wheel(n)
windmill(k, n)
fromName(name)
Instance Members
order
size
nodes
edges
toDot()
toString()
copy()
degree(k, undirect, direct)
adjacencies(k, undirect, direct)
components()
biconnectedComponents()
diameter()
eccentricity(k)
radius()
center()
girth()
clique(k?)
chromaticNumber()
chromaticNumberWelchPowell()
chromaticIndex()
articulations()
articulationsEachNodes()
bridges()
addNode(value?)
getNode(k?)
removeNode(k)
clearNodes()
addEdge(from, to, value, direct)
getEdges(from, to, undirect, direct)
removeEdges(from, to, direct)
clearEdges()
adjacencyMatrix()
adjacencyList(direct)
degreeMatrix(direct)
laplacianMatrix()
isNull()
isEdgeless()
isUndirected()
isDirected()
isMixed()
isOriented()
isWeighted()
isSimple()
isConnected()
isBiconnected()
isTree()
isForest()
isBipartite()
isComplete()
isRegular(n = null)
isPlainer()
isPlainerAddEdge()
isPlainerAddVertex()
isSymmetric()
isDAG()
isSeparable()
isEulerian()
isSemiEulerian()
isHamiltonian()
isSemiHamiltonian()
hasCycle()
hasCycleDFS()
hasCycleEachNodes()
toUndirected()
toSimple()
isomorphism(g)
isomorphismUllmann(g)
isomorphismVF2(g)
inducedSub(k)
complement()
line()
contraction(a, b)
subdivision(a, b)
cleaving(a)
disjointUnion(g)
substitution(k, g)
cartesianProduct(g)
tensorProduct(g)
strongProduct(g)
lexicographicProduct(g)
shortestPath(from?)
shortestPathBreadthFirstSearch(from)
shortestPathDijkstra(from)
shortestPathBellmanFord(from)
shortestPathFloydWarshall()
minimumSpanningTree()
minimumSpanningTreePrim()
minimumSpanningTreeKruskal()
minimumSpanningTreeBoruvka()
hamiltonianPath(from?)
hamiltonianPathDynamicProgramming(from?)
hamiltonianCycle()
cut(s, t)
mincut(minv)
mincutBruteForce(minv)
mincutStoerWagner(minv, startnode)
mincutKargers(minv, trials = null)
mincutKargersStein(minv, trials = null)
bisectionSpectral()

Complex number

new Complex(real: number, imag: number)
Parameters
real (number = 0) Real number
imag (number = 0) Imaginary number
Instance Members
real
imaginary
abs()
conjugate()
add(other)
sub(other)
mult(other)
div(other)
sqrt()
cbrt()
exp()
log()

A2C agent

new A2CAgent(env: RLEnvironmentBase, resolution: number, procs: number, layers: Array<Object<string, any>>, optimizer: string)
Parameters
env (RLEnvironmentBase) Environment
resolution (number) Resolution of actions
procs (number) Number of processes
layers (Array<Object<string, any>>) Network layers
optimizer (string) Optimizer of the network
Instance Members
get_score()
get_action(state)
update(done, learning_rate, batch)

Angle-based Outlier Detection

new ABOD(k: number)
Parameters
k (number = Infinity) Number of neighborhoods
Instance Members
predict(datas)

Lower-bound for the Angle-based Outlier Detection

new LBABOD(k: number, l: number)
Parameters
k (number = 10) Number of neighborhoods
l (number = 5) Number of outliers
Instance Members
predict(datas)

Adaptive Linear Neuron model

new ADALINE(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

Adaptive Metric Nearest Neighbor

new ADAMENN(k0: number?, k1: number, k2: number?, l: number?, k: number, c: number)
Parameters
k0 (number? = null) The number of neighbors of the test point
k1 (number = 3) The number of neighbors in N1 for estimation
k2 (number? = null) The size of the neighborhood N2 for each of the k0 neighbors for estimation
l (number? = null) The number of points within the delta intervals
k (number = 3) The number of neighbors in the final nearest neighbor rule
c (number = 0.5) The positive factor for the exponential weighting scheme
Instance Members
fit(x, y)
predict(datas)

Adaptive thresholding

new AdaptiveThresholding(method: ("mean" | "gaussian" | "median" | "midgray"), k: number, c: number)
Parameters
method (("mean" | "gaussian" | "median" | "midgray") = 'mean') Method name
k (number = 3) Size of local range
c (number = 2) Value subtracted from threshold
Instance Members
predict(x)

Affinity propagation model

new AffinityPropagation()
Instance Members
categories
centroids
size
epoch
init(datas)
fit()
predict()

AgglomerativeClusterNode

lib/model/agglomerative.js
AgglomerativeClusterNode

Type: object

Properties
point (Array<number>?) : Data point of leaf node
index (number?) : Data index of leaf node
distance (number?) : Distance between children nodes
distances (Array<number>?) : Distances of leaf data and others
size (number) : Number of leaf nodes
children (Array<AgglomerativeClusterNode>?) : Children nodes
leafs (Array<AgglomerativeClusterNode>) : Leaf nodes

AgglomerativeClustering

lib/model/agglomerative.js

Agglomerative clustering

new AgglomerativeClustering(metric: ("euclid" | "manhattan" | "chebyshev"))
Parameters
metric (("euclid" | "manhattan" | "chebyshev") = 'euclid') Metric name
Instance Members
fit(points)
getClusters(number)
predict(k)
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

CompleteLinkageAgglomerativeClustering

lib/model/agglomerative.js

Complete linkage agglomerative clustering

new CompleteLinkageAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

SingleLinkageAgglomerativeClustering

lib/model/agglomerative.js

Single linkage agglomerative clustering

new SingleLinkageAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

GroupAverageAgglomerativeClustering

lib/model/agglomerative.js

Group average agglomerative clustering

new GroupAverageAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

WardsAgglomerativeClustering

lib/model/agglomerative.js

Ward's agglomerative clustering

new WardsAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

CentroidAgglomerativeClustering

lib/model/agglomerative.js

Centroid agglomerative clustering

new CentroidAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

WeightedAverageAgglomerativeClustering

lib/model/agglomerative.js

Weighted average agglomerative clustering

new WeightedAverageAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

MedianAgglomerativeClustering

lib/model/agglomerative.js

Median agglomerative clustering

new MedianAgglomerativeClustering()

Extends AgglomerativeClustering

Instance Members
distance(c1, c2)
update(ca, cb, ck, ka, kb, ab)

AkimaInterpolation

lib/model/akima.js

Akima interpolation

new AkimaInterpolation(modified: boolean)
Parameters
modified (boolean = false) Use modified method or not
Instance Members
fit(x, y)
predict(target)

Approximate Large Margin algorithm

new ALMA(p: number, alpha: number, b: number, c: number)
Parameters
p (number = 2) Power parameter for norm
alpha (number = 1) Degree of approximation to the optimal margin hyperplane
b (number = 1) Tuning parameter
c (number = 1) Tuning parameter
Related
A New Approximate Maximal Margin Classification Algorithm. (2001)
Instance Members
update(x, y)
fit(x, y)
predict(data)

Averaged One-Dependence Estimators

new AODE(discrete: number)
Parameters
discrete (number = 20) Discretized number
Instance Members
fit(datas, y)
predict(data)

Autoregressive model

new AR(p: number, method: ("lsm" | "yuleWalker" | "levinson" | "householder"))
Parameters
p (number) Order
method (("lsm" | "yuleWalker" | "levinson" | "householder") = lms) Method name
Instance Members
fit(data)
predict(data, k)

Autoregressive moving average model

new ARMA(p: number, q: number)
Parameters
p (number) Order of AR
q (number) Order of MA
Instance Members
fit(data)
predict(data, k)

Adaptive regularization of Weight Vectors

new AROW(r: number)
Parameters
r (number = 0.1) Learning rate
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Adaptive resonance theory

new ART(t: number, method: "l2")
Parameters
t (number = 1) Threshold
method ("l2" = 'l2') Method name
Instance Members
size
fit(datas)
predict(datas)

Apriori algorithm

new Apriori(minsup: number)
Parameters
minsup (number) Minimum support
Instance Members
predict(x)

Association analysis

new AssociationAnalysis(support: number)
Parameters
support (number) Minimum support
Instance Members
fit(x)
items(n)
support(a)
confidence(a, b)
lift(a, b)

Autoencoder

new Autoencoder(input_size: number, reduce_size: number, enc_layers: Array<Object<string, any>>, dec_layers: Array<Object<string, any>>, optimizer: string)
Parameters
input_size (number) Input size
reduce_size (number) Reduced dimension
enc_layers (Array<Object<string, any>>) Layers of encoder
dec_layers (Array<Object<string, any>>) Layers of decoder
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(train_x, iteration, rate, batch, rho)
predict(x)
reduce(x)

Automatic thresholding

new AutomaticThresholding()
Instance Members
fit(x)
predict(x)

Average shifted histogram

new AverageShiftedHistogram(config: object, step: number)
Parameters
config (object) Config
step (number) Number of bins to average
Instance Members
fit(datas)
predict(datas)

BalancedHistogramThresholding

lib/model/balanced_histogram.js

Balanced histogram thresholding

new BalancedHistogramThresholding(minCount: number)
Parameters
minCount (number = 500) Minimum data count
Instance Members
predict(x)

Ballseptron

new Ballseptron(r: number)
Parameters
r (number) Radius
Instance Members
fit(x, y)
predict(data)

Banditron

new Banditron(gamma: number)
Parameters
gamma (number = 0.5) Gamma
Instance Members
fit(x, y)
predict(data)

BayesianLinearRegression

lib/model/bayesian_linear.js

Bayesian linear regression

new BayesianLinearRegression(lambda: number, sigma: number)
Parameters
lambda (number = 0.1) Tuning parameter
sigma (number = 0.2) Initial sigma of normal distribution
Instance Members
fit(x, y)
predict(x)

Bayesian Network

new BayesianNetwork(alpha: number)
Parameters
alpha (number) Equivalent sample size
Instance Members
fit(x)
probability(x)

BernsenThresholding

lib/model/bernsen.js

Bernsen thresholding

new BernsenThresholding(n: number, ct: number)
Parameters
n (number = 3) Size of local range
ct (number = 15) Minimum value of contrast
Instance Members
predict(x)

Bessel filter

new BesselFilter(n: number, c: number)

Extends LowpassFilter

Parameters
n (number = 2) Order
c (number = 0.5) Cutoff rate

Bilinear interpolation

new BilinearInterpolation()
Instance Members
fit(values, grids)
predict(x)

Balanced iterative reducing and clustering using hierarchies

new BIRCH(k: number, b: number, t: number, l: number)
Parameters
k (number)
b (number = 10) Maximum number of entries for each non-leaf nodes
t (number = 0.2) Threshold
l (number = Infinity) Maximum number of entries for each leaf nodes
Instance Members
fit(datas)
predict(datas)

Bounded Online Gradient Descent

new BOGD(b: number, eta: number, lambda: number, gamma: number, sampling: ("uniform" | "nonuniform"), kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), loss: ("zero_one" | "hinge"))
Parameters
b (number = 10) Maximum budget size
eta (number = 1) Stepsize
lambda (number = 0.1) Regularization parameter
gamma (number = 0.1) Maximum coefficient
sampling (("uniform" | "nonuniform") = nonuniform) Sampling approach
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
loss (("zero_one" | "hinge") = hinge) Loss type name
Instance Members
fit(x, y)
predict(data)

Box-Cox transformation

new BoxCox(lambda: number?)
Parameters
lambda (number? = null) Lambda
Instance Members
fit(x)
predict(x)

Budgeted online Passive-Aggressive

new BPA(c: number, b: number, version: ("simple" | "projecting" | "nn"), kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
c (number = 1) Regularization parameter
b (number = 10) Budget size
version (("simple" | "projecting" | "nn") = simple) Version
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Brahmagupta interpolation

new BrahmaguptaInterpolation()
Instance Members
fit(x, y)
predict(target)

Budgeted Stochastic Gradient Descent

new BSGD(b: number, eta: number, lambda: number, maintenance: ("removal" | "projection" | "merging"), kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
b (number = 10) Budget size
eta (number = 1) Learning rate
lambda (number = 1) Regularization parameter
maintenance (("removal" | "projection" | "merging") = removal) Maintenance type
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)
constructor(b: number, eta: number, lambda: number, maintenance: ("removal" | "projection" | "merging"), kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
b (number = 10) Budget size
eta (number = 1) Learning rate
lambda (number = 1) Regularization parameter
maintenance (("removal" | "projection" | "merging") = removal) Maintenance type
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name

Fit model.

fit(x: Array<Array<number>>, y: Array<any>)
Parameters
x (Array<Array<number>>) Training data
y (Array<any>) Target values

Returns predicted values.

predict(data: Array<Array<number>>): Array<any>
Parameters
data (Array<Array<number>>) Sample data
Returns
Array<any>: Predicted values

Budget Perceptron

new BudgetPerceptron(beta: number, n: number)
Parameters
beta (number) Tolerance
n (number = 0) Cachs size
Instance Members
fit(x, y)
predict(data)

ButterworthFilter

lib/model/butterworth.js

Butterworth filter

new ButterworthFilter(n: number, c: number)

Extends LowpassFilter

Parameters
n (number = 2) Order
c (number = 0.5) Cutoff rate

Clustering based on Closest Pairs

new C2P(r: number, m: number)
Parameters
r (number) Number of representative points
m (number) Number of required sub-clusters
Instance Members
fit(data)
getClusters(number)
predict(k)

Canny edge detection

new Canny(th1: number, th2: number)
Parameters
th1 (number) Big threshold
th2 (number) Small threshold
Instance Members
predict(x)

Clustering Affinity Search Technique

new CAST(t: number)
Parameters
t (number) Affinity threshold
Instance Members
size
fit(datas)
predict()

Categorical naive bayes

new CategoricalNaiveBayes(alpha: number)
Parameters
alpha (number = 1.0) Smoothing parameter
Instance Members
fit(datas, labels)
probability(datas)
predict(datas)

CatmullRomSplines

lib/model/catmull_rom.js

Catmull-Rom splines interpolation

new CatmullRomSplines()
Instance Members
fit(x, y)
predict(target)

CentripetalCatmullRomSplines

lib/model/catmull_rom.js

Centripetal Catmull-Rom splines interpolation

new CentripetalCatmullRomSplines(alpha: number)
Parameters
alpha (number = 0.5) Number for knot parameterization
Instance Members
fit(x, y)
predict(target)

CHAMELEON

new CHAMELEON(k: number)
Parameters
k (number = 5) Number of neighborhoods
Instance Members
fit(datas)
getClusters(number)
predict(k)

Change finder

new ChangeFinder(p: number, r: number, smooth: number)
Deprecated: Does not work properly
Parameters
p (number = 1) Order
r (number = 0.5) Forgetting factor
smooth (number = 10) Smoothing window size
Instance Members
fit(datas)
predict()

ChebyshevFilter

lib/model/chebyshev.js

Chebyshev filter

new ChebyshevFilter(type: (1 | 2), ripple: number, n: number, c: number)

Extends LowpassFilter

Parameters
type ((1 | 2) = 1) Type number
ripple (number = 1) Ripple factor
n (number = 2) Order
c (number = 0.5) Cutoff rate

Clustering LARge Applications

new CLARA(k: number)
Parameters
k (number) Number of clusters
Instance Members
init(datas)
fit()
predict()

Clustering Large Applications based on RANdomized Search

new CLARANS(k: number)
Parameters
k (number) Number of clusters
Instance Members
init(datas)
fit(numlocal, maxneighbor)
predict()

CLustering In QUEst

new CLIQUE(xi: (number | Array<number>), t: number)
Parameters
xi ((number | Array<number>)) Intervals
t (number) Density threshold
Instance Members
size
fit(datas)
predict(x)

CLUstEring based on local Shrinking

new CLUES(alpha: number)
Parameters
alpha (number = 0.05) Speed factor
Instance Members
size
fit(datas)
predict()

Co-training

new CoTraining(view1: object, view2: object)
Parameters
view1 (object) View
view2 (object) View
Instance Members
init(x, y)
fit()
predict()

Connectivity-based Outlier Factor

new COF(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Conscience on-line learning

new COLL(c: number, eta: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
c (number) Number of clusters
eta (number = 1) Initial learning rate
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
init(datas)
fit()
predict()

Complement Naive Bayes

new ComplementNaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
predict(data)

Confidence weighted

new ConfidenceWeighted(eta: number)
Parameters
eta (number) Confidence value
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

SoftConfidenceWeighted

lib/model/confidence_weighted.js

Soft confidence weighted

new SoftConfidenceWeighted(eta: number, cost: number, v: (1 | 2))

Extends ConfidenceWeighted

Parameters
eta (number) Confidence value
cost (number) Tradeoff value between passiveness and aggressiveness
v ((1 | 2)) Version number

Cosine interpolation

new CosineInterpolation()
Instance Members
fit(x, y)
predict(target)

Conditional random fields

new CRF()
Instance Members
fit(x, y)
probability(x, y)
predict(x)

CubicConvolutionInterpolation

lib/model/cubic_convolution.js

Cubic-convolution interpolation

new CubicConvolutionInterpolation(a: number)
Parameters
a (number) Tuning parameter
Instance Members
fit(values)
predict(index)

Cubic Hermite spline

new CubicHermiteSpline(t: number, b: number)
Parameters
t (number) Tension factor
b (number) Bias factor
Instance Members
fit(x, y)
predict(target)

Cubic interpolation

new CubicInterpolation()
Instance Members
fit(x, y)
predict(target)

Cumulative moving average

new CumulativeMovingAverage()
Instance Members
predict(data)

Cumulative sum change point detection

new CumSum()
Instance Members
init(datas)
fit()
predict()
CURENode

Type: object

Properties
point (Array<number>?) : Data point of leaf node
index (number?) : Data index of leaf node
distance (number?) : Distance between children nodes
size (number) : Number of leaf nodes
children (Array<CURENode>?) : Children nodes
leafs (Array<CURENode>) : Leaf nodes

Clustering Using REpresentatives

new CURE(c: number)
Parameters
c (number) Number of representative points
Instance Members
fit(data)
getClusters(number)
predict(k)

DiscriminantAdaptiveNearestNeighbor

lib/model/dann.js

Discriminant adaptive nearest neighbor

new DiscriminantAdaptiveNearestNeighbor(k: number)
Parameters
k (number = null) Number of neighborhoods
Instance Members
fit(x, y)
predict(data, iteration)

Distribution Based Clustering of LArge Spatial Databases

new DBCLASD()
Instance Members
predict(datas)

Density-based spatial clustering of applications with noise

new DBSCAN(eps: number, minPts: number, metric: ("euclid" | "manhattan" | "chebyshev"))
Parameters
eps (number = 0.5) Radius to determine neighborhood
minPts (number = 5) Minimum size of cluster
metric (("euclid" | "manhattan" | "chebyshev") = euclid) Metric name
Instance Members
predict(datas)

Decision tree

new DecisionTree()
Instance Members
depth
init(datas, targets)
fit()
importance()
predict_value(data)

DecisionTreeClassifier

lib/model/decision_tree.js

Decision tree classifier

new DecisionTreeClassifier(method: ("ID3" | "CART"))

Extends DecisionTree

Parameters
method (("ID3" | "CART")) Method name
Instance Members
predict_prob(data)
predict(data)

DecisionTreeRegression

lib/model/decision_tree.js

Decision tree regression

new DecisionTreeRegression()

Extends DecisionTree

Instance Members
predict(data)

Delaunay interpolation

new DelaunayInterpolation()
Instance Members
fit(x, y)
predict(x)

DemingRegression

lib/model/deming.js

Deming regression

new DemingRegression(d: number)
Parameters
d (number) Ratio of variances
Instance Members
fit(x, y)
predict(x)

DENsity CLUstering

new DENCLUE(h: number, version: (1 | 2), kernel: ("gaussian" | function (Array<number>): number))
Parameters
h (number) Smoothing parameter for the kernel
version ((1 | 2) = 1) Version number
kernel (("gaussian" | function (Array<number>): number) = gaussian) Kernel name
Instance Members
size
init(datas)
fit()
predict()

DIvisive ANAlysis Clustering

new DIANA()
Instance Members
size
init(datas)
fit()
predict()

Diffusion map

new DiffusionMap(t: number, kernel: ("gaussian" | function (Array<number>, Array<number>): number))
Parameters
t (number) Power parameter
kernel (("gaussian" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
predict(x, rd)

Deep Q-Network agent

new DQNAgent(env: RLEnvironmentBase, resolution: number, layers: Array<Object<string, any>>, optimizer: string)
Parameters
env (RLEnvironmentBase) Environment
resolution (number) Resolution of actions
layers (Array<Object<string, any>>) Network layers
optimizer (string) Optimizer of the network
Instance Members
method
get_score()
get_action(state, greedy_rate)
update(action, state, next_state, reward, done, learning_rate, batch)

Dynamic programming agent

new DPAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
get_score()
get_action(state)
update(method)

Elastic net

new ElasticNet(lambda: number, alpha: number, method: ("ISTA" | "CD"))
Parameters
lambda (number = 0.1) Regularization strength
alpha (number = 0.5) Mixing parameter
method (("ISTA" | "CD") = CD) Method name
Instance Members
fit(x, y)
predict(x)
importance()

Elliptic filter

new EllipticFilter(ripple: number, n: number, xi: number, c: number)

Extends LowpassFilter

Parameters
ripple (number = 1) Ripple factor
n (number = 2) Order
xi (number = 1) Selectivity factor
c (number = 0.5) Cutoff rate

Extended Natural Neighbor

new ENaN(metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
fit(datas, targets)
predict(datas)

Extended Nearest Neighbor

new ENN(version: (0 | 1 | 2), k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
version ((0 | 1 | 2) = 1) Version
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
fit(datas, targets)
predict(datas)
BinaryModel

Type: object

Properties
init (function (Array<Array<number>>, Array<any>): void) : Initialize model
fit (function (...any): void) : Fit model
predict (function (Array<Array<number>>): Array<number>) : Returns predicted values

EnsembleBinaryModel

lib/model/ensemble_binary.js

Ensemble binary models

new EnsembleBinaryModel(model: any, type: ("oneone" | "onerest"), classes: Array<any>?)
Parameters
model (any)
type (("oneone" | "onerest")) Type name
classes (Array<any>?) Initial class labels
Instance Members
init(train_x, train_y)
fit(x, y, args)
predict(data)

ExponentialMovingAverage

lib/model/exponential_average.js

Exponential moving average

new ExponentialMovingAverage()
Instance Members
predict(data, k)

Modified moving average

new ModifiedMovingAverage()
Instance Members
predict(data, k)

Bsae class for Extremely Randomized Trees

new ExtraTrees(tree_num: number, sampling_rate: number)
Parameters
tree_num (number) Number of trees
sampling_rate (number = 1.0) Sampling rate
Instance Members
depth
init(datas, targets)
fit()

ExtraTreesClassifier

lib/model/extra_trees.js

Extra trees classifier

new ExtraTreesClassifier(tree_num: number, sampling_rate: number)

Extends ExtraTrees

Parameters
tree_num (number) Number of trees
sampling_rate (number = 1.0) Sampling rate
Instance Members
predict(datas)

ExtraTreesRegressor

lib/model/extra_trees.js

Extra trees regressor

new ExtraTreesRegressor(tree_num: number, sampling_rate: number)

Extends ExtraTrees

Parameters
tree_num (number) Number of trees
sampling_rate (number = 1.0) Sampling rate
Instance Members
predict(datas)

FastMap

new FastMap()
Instance Members
predict(x, rd)

a Fast and INtelligent subspace clustering algorithm using DImension voting

new FINDIT(minsize: number, mindist: number)
Parameters
minsize (number) Mininum size of clusters
mindist (number) Merge threshold
Instance Members
size
fit(datas)
predict(x)

Forgetron

new Forgetron(b: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
b (number) Budget parameter
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Fuzzy c-means

new FuzzyCMeans(m: number)
Parameters
m (number = 2) Fuzziness factor
Instance Members
init(datas)
add()
fit()
predict()

Fuzzy k-nearest neighbor

new FuzzyKNN(k: number, m: number)
Parameters
k (number = 5) Number of neighborhoods
m (number = 2) Factor of weight for distance
Instance Members
categories
add(point, category?)
fit(datas, targets)
predict(datas)

Generative adversarial networks

new GAN(noise_dim: number, g_hidden: Array<Object<string, any>>, d_hidden: Array<Object<string, any>>, g_opt: string, d_opt: string, class_size: (number | null), type: ("" | "conditional"))
Parameters
noise_dim (number) Number of noise dimension
g_hidden (Array<Object<string, any>>) Layers of generator
d_hidden (Array<Object<string, any>>) Layers of discriminator
g_opt (string) Optimizer of the generator network
d_opt (string) Optimizer of the discriminator network
class_size ((number | null)) Class size for conditional type
type (("" | "conditional")) Type name
Instance Members
epoch
fit(x, y, step, gen_rate, dis_rate, batch)
prob(x, y)
generate(n, y)

Gasser–Müller kernel estimator

new GasserMuller(h: number)
Parameters
h (number) Smoothing parameter for the kernel
Instance Members
fit(x, y)
predict(x)

Gaussian process

new GaussianProcess(kernel: "gaussian", beta: number)
Parameters
kernel ("gaussian" = gaussian) Kernel name
beta (number = 1) Precision parameter
Instance Members
init(x, y)
fit(learning_rate)
predict(x)

Gradient boosting decision tree

new GBDT(maxdepth: number, srate: number, lr: number)
Parameters
maxdepth (number = 1) Maximum depth of tree
srate (number = 1.0) Sampling rate
lr (number = 0) Learning rate
Instance Members
size
init(x, y)
fit()
predict(x)

GBDTClassifier

lib/model/gbdt.js

Gradient boosting decision tree classifier

new GBDTClassifier(maxdepth: number, srate: number, lr: number)

Extends GBDT

Parameters
maxdepth (number = 1) Maximum depth of tree
srate (number = 1.0) Sampling rate
lr (number = 0) Learning rate
Instance Members
init(x, y)
predict(x)

Generalized extreme studentized deviate

new GeneralizedESD(alpha: number, r: number)
Parameters
alpha (number) Significance level
r (number) Max number of outliers
Instance Members
predict(data)
GeneticModel

Type: object

Properties
run (function (...any): void) : Run model
mutation (function (): GeneticModel) : Returns mutated model
mix (function (GeneticModel): GeneticModel) : Returns mixed model
score (function (): number) : Returns a number how good the model is

Genetic algorithm

new GeneticAlgorithm(size: number, model: any)
Parameters
size (number) Number of models per generation
model (any)
Instance Members
bestModel
run(args)
next(mutation_rate)

GeneticAlgorithmGeneration

lib/model/genetic_algorithm.js

Genetic algorithm generation

new GeneticAlgorithmGeneration(env: RLEnvironmentBase, size: number, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
size (number = 100) Number of models per generation
resolution (number = 20) Resolution
Instance Members
reset()
get_score()
top_agent()
run()
next(mutation_rate)

Genetic k-means model

new GeneticKMeans(k: number, size: number)
Parameters
k (number) Number of clusters
size (number) Number of models per generation
Instance Members
centroids
bestModel
init(datas)
predict(datas)
fit()

G-means

new GMeans()
Instance Members
centroids
size
clear()
fit(datas, iterations)
predict(datas)

Gaussian mixture model

new GMM()
Instance Members
add()
clear()
probability(data)
predict(data)
fit(datas)

SemiSupervisedGMM

lib/model/gmm.js

Semi-Supervised gaussian mixture model

new SemiSupervisedGMM()

Extends GMM

Instance Members
categories
init(datas, labels)
fit(datas, y)
predict(data)

Gaussian mixture regression

new GMR()

Extends GMM

Instance Members
add()
clear()
fit(x, y)
probability(x, y)
predict(x)

Gaussian Process Latent Variable Model

new GPLVM(rd: number, alpha: number, ez: number, ea: number, ep: number, kernel: "gaussian", kernelArgs: Array<any>?)
Parameters
rd (number) Reduced dimension
alpha (number) Precision parameter
ez (number = 1.0) Learning rate for z
ea (number = 0.005) Learning rate for alpha
ep (number = 0.2) Learning rate for kernel
kernel ("gaussian" = gaussian) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(x)
fit()
llh()
predict()
reconstruct(z)

Growing cell structures

new GrowingCellStructures()
Instance Members
size
update(x)
fit(x)
predict(datas)

Growing neural gas

new GrowingNeuralGas(l: number, m: number)
Parameters
l (number) Neughborhood range
m (number) Decreasing factor of l
Instance Members
size
update(x)
fit(x)
predict(datas)

Growing Self-Organizing Map

new GSOM(sf: number, lr: number)
Parameters
sf (number = 0.1) Spread factor
lr (number = 0.1) Learning rate
Instance Members
size
fit(data)
predict(x)

Generative topographic mapping

new GTM(input_size: number, output_size: number, k: number, q: number)
Parameters
input_size (number) Input size
output_size (number) Output size
k (number = 20) Grid size
q (number = 10) Grid size for basis function
Instance Members
probability(x)
responsibility(x)
fit(data)
predictIndex(x)
predict(x)

Hampel filter

new HampelFilter(k: number, th: number)
Parameters
k (number = 3) Half window size
th (number = 3) Threshold
Instance Members
predict(x)

Hierarchical Density-based spatial clustering of applications with noise

new HDBSCAN(minClusterSize: number, minPts: number, metric: ("euclid" | "manhattan" | "chebyshev"))
Parameters
minClusterSize (number = 5) Minimum number of clusters to be recognized as a cluster
minPts (number = 5) Number of neighborhood with core distance
metric (("euclid" | "manhattan" | "chebyshev") = euclid) Metric name
Instance Members
size
predict(datas)

Histogram

new Histogram(config: object?)
Parameters
config (object? = {}) Config
Instance Members
fit(datas)
predict(datas)

Hessian Locally Linear Embedding

new HLLE(k: number)
Parameters
k (number = 1) Number of neighborhoods
Instance Members
predict(x, rd)

Hidden Markov model

new HMMBase(n: number)
Parameters
n (number) Number of states
Instance Members
probability(x)
bestPath(x)

Hidden Markov model

new HMM(n: number)

Extends HMMBase

Parameters
n (number) Number of states
Instance Members
fit(datas, scaled)
probability(datas)
bestPath(data)

ContinuousHMM

lib/model/hmm.js

Continuous hidden Markov model

new ContinuousHMM(n: number)

Extends HMMBase

Parameters
n (number) Number of states
Instance Members
fit(x, scaled)
probability(datas)
bestPath(data)
generate(n, length)

Holt-Winters method

new HoltWinters(a: number, b: number, g: number, s: number)
Parameters
a (number) Weight for last value
b (number = 0) Weight for trend value
g (number = 0) Weight for seasonal data
s (number = 0) Length of season
Instance Members
fit(x)
predict(k)

HopfieldNetwork

lib/model/hopfield.js

Hopfield network

new HopfieldNetwork()
Instance Members
fit(x)
energy(x)
predict(x)

Hotelling T-square Method

new Hotelling()
Instance Members
fit(data)
predict(data)

Huber regression

new HuberRegression(e: number, method: ("rls" | "gd"), lr: number)
Parameters
e (number = 1.35) Threshold of outliers
method (("rls" | "gd") = rls) Method name
lr (number = 1) Learning rate
Instance Members
fit(x, y)
predict(x)

Independent component analysis

new ICA()
Instance Members
fit(x)
predict(x, rd)

Classical ellipsoid method

new CELLIP(gamma: number, a: number)
Parameters
gamma (number = 0.1) Desired classification margin
a (number = 0.5) Tradeoff parameter
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Improved ellipsoid method

new IELLIP(b: number, c: number)
Parameters
b (number = 0.9) Parameter controlling the memory of online learning
c (number = 0.5) Parameter controlling the memory of online learning
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Locally Informative K-Nearest Neighbor

new IKNN(k: number, i: number)
Parameters
k (number) Number of neighbors
i (number) Number of informative points
Instance Members
fit(x, y)
predict(data)

Incremental principal component analysis

new IncrementalPCA(f: number)
Parameters
f (number = 0.95) Forgetting factor
Instance Members
update(x)
fit(x)
predict(x, rd)

Influenced Outlierness

new INFLO(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Inverse distance weighting

new InverseDistanceWeighting(k: number, p: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
k (number = 5) Number of neighborhoods
p (number = 2) Power parameter
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
fit(x, y)
predict(data)

InverseSmoothstepInterpolation

lib/model/inverse_smoothstep.js

Inverse smoothstep interpolation

new InverseSmoothstepInterpolation()
Instance Members
fit(x, y)
predict(target)

Iterative Self-Organizing Data Analysis Technique

new ISODATA(init_k: number, min_k: number, max_k: number, min_n: number, split_std: number, merge_dist: number)
Parameters
init_k (number) Initial cluster count
min_k (number) Minimum cluster count
max_k (number) Maximum cluster count
min_n (number) Minimum cluster size
split_std (number) Standard deviation as splid threshold
merge_dist (number) Merge distance
Instance Members
centroids
size
init(data)
fit(data)
predict(datas)

Isolation forest

new IsolationForest(tree_num: number, sampling_rate: number)
Parameters
tree_num (number = 100) Number of trees
sampling_rate (number = 0.8) Sampling rate
Instance Members
fit(datas)
predict(datas)

Isomap

new Isomap(neighbors: number)
Parameters
neighbors (number = 0) Number of neighborhoods
Instance Members
predict(x, rd)

IsotonicRegression

lib/model/isotonic.js

Isotonic regression

new IsotonicRegression()
Instance Members
fit(x, y)
predict(x)

Kalman filter

new KalmanFilter()
Instance Members
fit(z)
predict(k)

Kernel Density Estimation Outlier Score

new KDEOS(kmin: number, kmax: number, kernel: ("gaussian" | "epanechnikov" | function (number, number, number): number))
Parameters
kmin (number) Minimum number of neighborhoods
kmax (number) Maximum number of neighborhoods
kernel (("gaussian" | "epanechnikov" | function (number, number, number): number) = gaussian) Kernel name
Instance Members
predict(datas)

Kernel density estimator

new KernelDensityEstimator(h: number, kernel: ("gaussian" | "rectangular" | "triangular" | "epanechnikov" | "biweight" | "triweight" | function (number): number))
Parameters
h (number = 0) Smoothing parameter for the kernel
kernel (("gaussian" | "rectangular" | "triangular" | "epanechnikov" | "biweight" | "triweight" | function (number): number) = gaussian) Kernel name
Instance Members
fit(x)
probability(x)
predict(x)

Kernel k-means

new KernelKMeans(k: number)
Parameters
k (number = 3) Number of clusters
Instance Members
init(datas)
predict()
fit()

Kernelized Primal Estimated sub-GrAdientSOlver for SVM

new KernelizedPegasos(rate: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
rate (number) Learning rate
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
init(train_x, train_y)
fit()
predict(data)

Kernelized perceptron

new KernelizedPerceptron(rate: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
rate (number = 1) Learning rate
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Kullback-Leibler importance estimation procedure

new KLIEP(sigma: Array<number>, fold: number, kernelNum: number)
Parameters
sigma (Array<number>) Sigmas of normal distribution
fold (number) Number of folds
kernelNum (number) Number of kernels
Instance Members
fit(x1, x2)
predict(x)

Bsae class for k-means like model

new KMeansBase()
Instance Members
centroids
size
add(datas)
clear()
predict(datas)
fit(datas)

k-means model

new KMeans()

Extends KMeansBase

Instance Members
_add(centroids, datas)
_move(centroids, datas)

k-means++ model

new KMeanspp()

Extends KMeans

Instance Members
_add(centroids, datas)

k-medoids model

new KMedoids()

Extends KMeans

Instance Members
_move(centroids, datas)

k-medians model

new KMedians()

Extends KMeans

Instance Members
_move(centroids, datas)

SemiSupervisedKMeansModel

lib/model/kmeans.js

semi-supervised k-means model

new SemiSupervisedKMeansModel()

Extends KMeansBase

Instance Members
categories
init(datas, labels)
fit(datas, labels)
predict(datas)

k-modes model

new KModes()
Instance Members
size
add(datas)
clear()
predict(datas)
fit(datas)

Bsae class for k-nearest neighbor models

new KNNBase(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
_add(point, category?)

k-nearest neighbor

new KNN(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

k-nearest neighbor regression

new KNNRegression(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

k-nearest neighbor anomaly detection

new KNNAnomaly(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point)
fit(datas)
predict(datas)

KNNDensityEstimation

lib/model/knearestneighbor.js

k-nearest neighbor density estimation

new KNNDensityEstimation(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point)
fit(datas)
predict(datas)

Semi-supervised k-nearest neighbor

new SemiSupervisedKNN(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends KNNBase

Parameters
k (number = 5) Number of neighborhoods
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict()

k-prototypes model

new KPrototypes(gamma: number, categoryPositions: Array<boolean>)
Parameters
gamma (number) Weight for categorical data
categoryPositions (Array<boolean>) Category column position
Instance Members
size
add(datas)
clear()
predict(datas)
fit(datas)

k-SVD

new KSVD(x: Array<Array<number>>, m: number, k: number?)
Parameters
x (Array<Array<number>>) Training data
m (number) Reduced dimension
k (number? = m) Sparsity parameter
Instance Members
fit()
predict()

KolmogorovZurbenkoFilter

lib/model/kz.js

Kolmogorov–Zurbenko filter

new KolmogorovZurbenkoFilter(m: number, k: number)
Parameters
m (number) Window size
k (number) Iteration count of a moving average
Instance Members
predict(x)

Label propagation

new LabelPropagation(method: ("rbf" | "knn"), sigma: number, k: number)
Parameters
method (("rbf" | "knn") = rbf) Method name
sigma (number = 0.1) Sigma of normal distribution
k (number = Infinity) Number of neighborhoods
Instance Members
init(x, y)
predict()

Label spreading

new LabelSpreading(alpha: number, method: ("rbf" | "knn"), sigma: number, k: number)
Parameters
alpha (number = 0.2) Clamping factor
method (("rbf" | "knn") = rbf) Method name
sigma (number = 0.1) Sigma of normal distribution
k (number = Infinity) Number of neighborhoods
Instance Members
init(x, y)
fit()
predict()

Ladder network

new LadderNetwork(hidden_sizes: Array<number>, lambdas: Array<number>, activation: string, optimizer: string)
Parameters
hidden_sizes (Array<number>) Sizes of hidden layers
lambdas (Array<number>) Regularization parameters
activation (string) Activation name
optimizer (string) Optimizer of the network
Instance Members
fit(train_x, train_y, iteration, rate, batch)
predict(x)

LagrangeInterpolation

lib/model/lagrange.js

Lagrange interpolation

new LagrangeInterpolation(method: ("weighted" | "newton" | ""))
Parameters
method (("weighted" | "newton" | "") = weighted) Method name
Instance Members
fit(x, y)
predict(target)

Lanczos interpolation

new LanczosInterpolation(n: number)
Parameters
n (number) Order
Instance Members
fit(values)
predict(index)

Laplacian edge detection

new Laplacian(th: number, n: (4 | 8))
Parameters
th (number) Threshold
n ((4 | 8) = 4) Number of neighborhoods
Instance Members
predict(x)

Laplacian eigenmaps

new LaplacianEigenmaps(affinity: ("rbf" | "knn"), k: number, sigma: number, laplacian: ("unnormalized" | "normalized"))
Parameters
affinity (("rbf" | "knn") = rbf) Affinity type name
k (number = 10) Number of neighborhoods
sigma (number = 1) Sigma of normal distribution
laplacian (("unnormalized" | "normalized") = unnormalized) Normalized laplacian matrix or not
Instance Members
predict(x, rd)

Least absolute shrinkage and selection operator

new Lasso(lambda: number, method: ("CD" | "ISTA" | "LARS"))
Parameters
lambda (number = 1.0) Regularization strength
method (("CD" | "ISTA" | "LARS") = CD) Method name
Instance Members
fit(x, y)
predict(x)
importance()

Latent dirichlet allocation

new LatentDirichletAllocation(t: number)
Parameters
t (number = 2) Topic count
Instance Members
init(x)
predict()

Linde-Buzo-Gray algorithm

new LBG()
Instance Members
centroids
size
clear()
fit(datas)
predict(datas)

LinearDiscriminant

lib/model/lda.js

Linear discriminant analysis

new LinearDiscriminant()
Instance Members
init(train_x, train_y)
fit()
predict(data)

FishersLinearDiscriminant

lib/model/lda.js

Fishers linear discriminant analysis

new FishersLinearDiscriminant()
Instance Members
init(train_x, train_y)
fit()
predict(data)

MulticlassLinearDiscriminant

lib/model/lda.js

Multiclass linear discriminant analysis

new MulticlassLinearDiscriminant()
Instance Members
fit(x, y)
predict(data)

LinearDiscriminantAnalysis

lib/model/lda.js

Linear discriminant analysis

new LinearDiscriminantAnalysis()
Instance Members
predict(x, t, rd)

Local Density Factor

new LDF(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Local Distance-based Outlier Factor

new LDOF(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Least absolute deviations

new LeastAbsolute()
Instance Members
fit(x, y)
predict(x)

Least squares

new LeastSquares()
Instance Members
fit(x, y)
predict(x)

LinearInterpolation

lib/model/lerp.js

Linear interpolation

new LinearInterpolation()
Instance Members
fit(x, y)
predict(target)

Locally Linear Embedding

new LLE(k: number)
Parameters
k (number = 1) Number of neighborhoods
Instance Members
predict(x, rd)

LeastMedianSquaresRegression

lib/model/lmeds.js

Least median squares regression

new LeastMedianSquaresRegression(k: number)
Parameters
k (number = 5) Sampling count
Instance Members
fit(x, y)
predict(x)

Large Margin Nearest Neighbor

new LMNN(gamma: number, lambda: number)
Parameters
gamma (number) Tuning parameter
lambda (number) Tuning parameter
Instance Members
init(x, y)
fit()
predict(x)

Local Correlation Integral

new LOCI(alpha: number)
Parameters
alpha (number = 0.5) Alpha
Instance Members
predict(datas)

Locally estimated scatterplot smoothing

new LOESS()
Instance Members
fit(x, y)
predict(x)

Local Outlier Factor

new LOF(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Laplacian of gaussian filter

new LoG(th: number)
Parameters
th (number) Threshold
Instance Members
predict(x)

Logarithmic interpolation

new LogarithmicInterpolation()
Instance Members
fit(x, y)
predict(target)

LogisticRegression

lib/model/logistic.js

Logistic regression

new LogisticRegression()
Instance Members
fit(x, y, iteration, rate, l1, l2)
predict(points)

MultinomialLogisticRegression

lib/model/logistic.js

Multinomial logistic regression

new MultinomialLogisticRegression(classes: Array<number>?)
Parameters
classes (Array<number>?) Initial class labels
Instance Members
fit(train_x, train_y, iteration, rate, l1, l2)
predict(points)

Local Outlier Probability

new LoOP(k: number)
Parameters
k (number) Number of neighborhoods
Instance Members
predict(datas)

Locally weighted scatter plot smooth

new LOWESS()
Instance Members
fit(x, y)
predict(x)

Lowpass filter

new LowpassFilter(c: number)
Parameters
c (number = 0.5) Cutoff rate
Instance Members
predict(x)

LpNormLinearRegression

lib/model/lpnorm_linear.js

Lp norm linear regression

new LpNormLinearRegression(p: number)
Parameters
p (number = 2) Power parameter for norm
Instance Members
fit(x, y)
predict(x)

Latent Semantic Analysis

new LSA()
Instance Members
predict(x, rd)

Least-squares density difference

new LSDD(sigma: Array<number>, lambda: Array<number>)
Parameters
sigma (Array<number>) Sigmas of normal distribution
lambda (Array<number>) Regularization parameters
Instance Members
fit(x1, x2)
predict(x)

LSDD for change point detection

new LSDDCPD(w: number, take: number?, lag: number?)
Parameters
w (number) Window size
take (number?) Take number
lag (number?) Lag
Instance Members
predict(datas)

least-squares importance fitting

new LSIF(sigma: Array<number>, lambda: Array<number>, fold: number, kernelNum: number)
Parameters
sigma (Array<number>) Sigmas of normal distribution
lambda (Array<number>) Regularization parameters
fold (number) Number of folds
kernelNum (number) Number of kernels
Instance Members
fit(x1, x2)
predict(x)

LeastTrimmedSquaresRegression

lib/model/lts.js

Least trimmed squares

new LeastTrimmedSquaresRegression(h: number)
Parameters
h (number = 0.9) Sampling rate
Instance Members
fit(x, y)
predict(x)

Local Tangent Space Alignment

new LTSA(k: number)
Parameters
k (number = 1) Number of neighborhoods
Instance Members
predict(x, rd)

Learning Vector Quantization clustering

new LVQCluster(k: number)
Parameters
k (number) Number of clusters
Instance Members
fit(x, lr)
predict(datas)

LVQClassifier

lib/model/lvq.js

Learning Vector Quantization classifier

new LVQClassifier(type: (1 | 2 | 3))
Parameters
type ((1 | 2 | 3)) Type number
Instance Members
fit(x, y, lr)
predict(datas)

Median Absolute Deviation

new MAD()
Instance Members
fit(data)
predict(data)

Many Adaptive Linear Neuron model

new MADALINE(sizes: Array<number>, rule: (1 | 2 | 3), rate: number)
Parameters
sizes (Array<number>) Numbers of layers
rule ((1 | 2 | 3) = 2) Rule
rate (number) Learning rate
Instance Members
fit(x, y)
outputLayers(data, from)
predict(data)

Margin Perceptron

new MarginPerceptron(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

Markov switching

new MarkovSwitching(regime: number)
Parameters
regime (number) Number of regime
Instance Members
fit(datas, eps, trial)
probability(datas)
predict(datas)

Max absolute scaler

new MaxAbsScaler()
Instance Members
fit(x)
predict(x)

MaximumLikelihoodEstimator

lib/model/maximum_likelihood.js

Maximum likelihood estimator

new MaximumLikelihoodEstimator(distribution: "normal")
Parameters
distribution ("normal" = normal) Distribution name
Instance Members
fit(x)
probability(x)
predict(x)

Minimum Covariance Determinant

new MCD(datas: Array<Array<number>>, sampling_rate: number)
Parameters
datas (Array<Array<number>>) Training data
sampling_rate (number) Sampling rate
Instance Members
fit()
predict(data)

MixtureDiscriminant

lib/model/mda.js

Mixture discriminant analysis

new MixtureDiscriminant(r: number)
Parameters
r (number) Number of components
Instance Members
init(x, y)
fit()
predict(data)

Multi-dimensional Scaling

new MDS()
Instance Members
predict(x, rd, dmat)

Mean shift

new MeanShift(h: number)
Parameters
h (number) Smoothing parameter for the kernel
Instance Members
categories
init(data)
predict(threshold)
fit()

MetropolisHastings

lib/model/mh.js

Metropolis-Hastings algorithm

new MetropolisHastings(targetFunc: function (Array<number>): number, d: number, q: "gaussian")
Parameters
targetFunc (function (Array<number>): number) Target distribution
d (number) Output size
q ("gaussian" = gaussian) Proposal density name
Instance Members
sample(n, t)

MinmaxNormalization

lib/model/minmax.js

Min-max normalization

new MinmaxNormalization(min: number, max: number)
Parameters
min (number = 0) Minimum value
max (number = 1) Maximum value
Instance Members
fit(x)
predict(x)

Margin Infused Relaxed Algorithm

new MIRA()
Instance Members
update(x, y)
fit(x, y)
predict(data)

Modified Locally Linear Embedding

new MLLE(k: number)
Parameters
k (number = 1) Number of neighborhoods
Instance Members
predict(data, rd)

MLPClassifier

lib/model/mlp.js

Multi layer perceptron classifier

new MLPClassifier(hidden_sizes: Array<number>, activation: string, optimizer: string)
Parameters
hidden_sizes (Array<number>) Sizes of hidden layers
activation (string) Activation name
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(train_x, train_y, iteration, rate, batch)
predict(x)

MLPRegressor

lib/model/mlp.js

Multi layer perceptron regressor

new MLPRegressor(hidden_sizes: Array<number>, activation: string, optimizer: string)
Parameters
hidden_sizes (Array<number>) Sizes of hidden layers
activation (string) Activation name
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(train_x, train_y, iteration, rate, batch)
predict(x)

Method of Optimal Direction

new MOD(x: Array<Array<number>>, m: number, k: number?)
Parameters
x (Array<Array<number>>) Training data
m (number) Reduced dimension
k (number? = m) Sparsity parameter
Instance Members
fit()
predict()

MONothetic Analysis Clustering

new MONA()
Instance Members
size
init(datas)
fit()
predict()

MonotheticClustering

lib/model/monothetic.js

Monothetic Clustering

new MonotheticClustering()
Instance Members
size
init(datas)
fit()
predict()

Monte Carlo agent

new MCAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
reset()
get_score()
get_action(state, greedy_rate)
update(action, state, reward, done)

Mountain method

new Mountain(r: number, alpha: number, beta: number)
Parameters
r (number) Resolution of grid
alpha (number) Tuning parameter
beta (number) Tuning parameter
Instance Members
init(datas)
fit()
predict(data)

SimpleMovingAverage

lib/model/moving_average.js

Simple moving average

new SimpleMovingAverage()
Instance Members
predict(data, n)

LinearWeightedMovingAverage

lib/model/moving_average.js

Linear weighted moving average

new LinearWeightedMovingAverage()
Instance Members
predict(data, n)

TriangularMovingAverage

lib/model/moving_average.js

Triangular moving average

new TriangularMovingAverage()
Instance Members
predict(data, k)

Moving median

new MovingMedian()
Instance Members
predict(data, n)

Mahalanobis Taguchi method

new MT()
Instance Members
fit(data)
predict(data)

MutualInformationFeatureSelection

lib/model/mutual_information.js

Mutual information feature selector

new MutualInformationFeatureSelection()
Instance Members
fit(x, y)
predict(x, k)

Mutual k-nearest-neighbor model

new MutualKNN(k: number)
Parameters
k (number = 5) Number of neighborhoods
Instance Members
size
fit(datas)
predict()

n-cubic interpolation

new NCubicInterpolation()
Instance Members
fit(values, grids)
predict(x)

n-linear interpolation

new NLinearInterpolation()
Instance Members
fit(values, grids)
predict(x)

Nadaraya–Watson kernel regression

new NadarayaWatson(s: number?)
Parameters
s (number?) Sigmas of normal distribution
Instance Members
fit(x, y)
predict(x)

Naive bayes

new NaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
probability(data)
predict(data)

Narrow Adaptive Regularization Of Weights

new NAROW(b: number)
Parameters
b (number = 1) Tuning parameter
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Natural neighbor interpolation

new NaturalNeighborInterpolation()
Instance Members
fit(x, y)
predict(x)

NeighbourhoodComponentsAnalysis

lib/model/nca.js

Neighbourhood components analysis

new NeighbourhoodComponentsAnalysis(d: number?, lr: number)
Parameters
d (number? = null) Reduced dimension
lr (number = 0.1) Learning rate
Instance Members
fit(x, y)
importance()
predict(x)

Nearest centroid classifier

new NearestCentroid(metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

Negation Naive bayes

new NegationNaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
predict(data)

Neural gas model

new NeuralGas(l: number, m: number)
Parameters
l (number = 1) Neughborhood range
m (number = 0.99) Decreasing factor of l
Instance Members
centroids
size
add(datas)
clear()
predict(datas)
fit(datas)

NeuralnetworkException

lib/model/neuralnetwork.js

Exception for neuralnetwork class

new NeuralnetworkException(message: string, value: any)

Extends Error

Parameters
message (string) Error message
value (any) Some value

Neuralnetwork

new NeuralNetwork(graph: ComputationalGraph, optimizer: ("sgd" | "adam" | "momentum" | "rmsprop"))
Parameters
graph (ComputationalGraph) Graph of a network
optimizer (("sgd" | "adam" | "momentum" | "rmsprop") = sgd) Optimizer of the network
Static Members
fromObject(layers, loss?, optimizer)
fromONNX(buffer)
Instance Members
copy()
toObject()
calc(x, t?, out?, options)
grad(e?)
update(learning_rate)
fit(x, t, epoch, learning_rate, batch_size = null, options = {})
predict(x)

NeuralnetworkLayerException

lib/model/nns/layer/base.js

Exception for neuralnetwork layer class

new NeuralnetworkLayerException(message: string, value: any)

Extends Error

Parameters
message (string) Error message
value (any) Some value

Neuralnetwork layer

new Layer(obj: object)
Parameters
obj (object) Config
Static Members
fromObject(obj)
registLayer(name?, cls?)
Instance Members
bind(values)
calc(x)
grad(bo)
update(optimizer)
toObject()

Base class for Flow-based generative model

new FlowLayer()

Extends Layer

Instance Members
inverse(y)
jacobianDeterminant()
Node

Type: object

Properties
layer (Layer) : Layer
name (string) : Name of the node
input (Array<string>?) : Input node names
outputValue ((Matrix | Array<Matrix>)?) : Output value of this node to next layer
gradientValue (Array<Matrix>?) : Gradient value of this node from next layer

ComputationalGraph

lib/model/nns/graph.js

Computational graph for Neuralnetwork structure

new ComputationalGraph()
Static Members
fromObject(nodes)
fromONNX(buffer)
Instance Members
nodes
inputNodes
outputNodes
size
toObject()
toDot()
add(layer, name?, inputs = undefined)
bind(values)
calc(require?)
grad(e?)
getNode(name)

Additive coupling layer

new AdditiveCoupling($0: Object, config: object)

Extends FlowLayer

Parameters
$0 (Object)
NameDescription
$0.d any (default null)
$0.net any (default null)
$0.rest ...any
config (object) object

AdaptivePiecewiseLinearLayer

lib/model/nns/layer/apl.js

Adaptive piecewise linear layer

new AdaptivePiecewiseLinearLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.s any (default 2)
$0.a any (default 0.1)
$0.b any (default 0)
$0.rest ...any
config (object) object

Aranda layer

new ArandaLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.l any (default 2)
$0.rest ...any
config (object) object

Argmax layer

new ArgmaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) object

Argmin layer

new ArgminLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) object

Attention layer

new AttentionLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.dk any (default null)
$0.dv any (default null)
$0.wq any (default null)
$0.wk any (default null)
$0.wv any (default null)
$0.rest ...any
config (object) object

Average pool layer

new AveragePoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.kernel any
$0.stride any (default null)
$0.padding any (default null)
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

Batch normalization layer

new BatchNormalizationLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.scale any (default 1)
$0.offset any (default 0)
$0.epsilon any (default 1.0e-12)
$0.channel_dim any (default -1)
$0.input_mean any
$0.input_var any
$0.rest ...any
config (object) object

BimodalDerivativeAdaptiveActivationLayer

lib/model/nns/layer/bdaa.js

Bimodal derivative adaptive activation layer

new BimodalDerivativeAdaptiveActivationLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.rest ...any
config (object) object

BendableLinearUnitLayer

lib/model/nns/layer/blu.js

Bendable linear unit layer

new BendableLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 0.1)
$0.rest ...any
config (object) object

Bounded ReLU layer

new BoundedReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.rest ...any
config (object) object

ContinuouslyDifferentiableELULayer

lib/model/nns/layer/celu.js

Continuously differentiable ELU layer

new ContinuouslyDifferentiableELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1.0)
$0.rest ...any
config (object) object

Clip layer

new ClipLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.min any (default null)
$0.max any (default null)
$0.rest ...any
config (object) object

Concat layer

new ConcatLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default 1)
$0.rest ...any
config (object) object

Condition layer

new CondLayer()

Extends Layer

Constant layer

new ConstLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.value any
$0.rest ...any
config (object) object

Convolutional layer

new ConvLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.kernel any
$0.channel any (default null)
$0.stride any (default null)
$0.padding any (default null)
$0.w any (default null)
$0.activation any (default null)
$0.l2_decay any (default 0)
$0.l1_decay any (default 0)
$0.activation_params any (default {})
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

ConcatenatedReLULayer

lib/model/nns/layer/crelu.js

Concatenated ReLU layer

new ConcatenatedReLULayer()

Extends Layer

Dropout layer

new DropoutLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.drop_rate any (default 0.5)
$0.rest ...any
config (object) object

Elastic ELU layer

new ElasticELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.k any (default 1)
$0.alpha any (default 1)
$0.beta any (default 1)
$0.rest ...any
config (object) object

ELU layer

new ELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.rest ...any
config (object) object

Embedding layer

new EmbeddingLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any (default 512)
$0.embeddings any (default {})
$0.rest ...any
config (object) object

Elastic ReLU layer

new ElasticReLULayer($0: Object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.rest ...any

E-swish layer

new ESwishLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 1)
$0.rest ...any
config (object) object

Fast ELU layer

new FastELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.rest ...any
config (object) object

Flatten layer

new FlattenLayer()

Extends Layer

Flexible ReLU layer

new FlexibleReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.b any (default 0)
$0.rest ...any
config (object) object

Fully connected layer

new FullyConnected($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.out_size any
$0.w any (default null)
$0.b any (default null)
$0.activation any (default null)
$0.l2_decay any (default 0)
$0.l1_decay any (default 0)
$0.activation_params any (default {})
$0.rest ...any
config (object) object

Gaussian layer

new GaussianLayer()

Extends Layer

Global average pool layer

new GlobalAveragePoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

Global Lp pool layer

new GlobalLpPoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.p any (default 2)
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

Global max pool layer

new GlobalMaxPoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

GRU layer

new GRULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.return_sequences any (default false)
$0.w_z any (default null)
$0.w_r any (default null)
$0.w_h any (default null)
$0.u_z any (default null)
$0.u_r any (default null)
$0.u_h any (default null)
$0.b_z any (default null)
$0.b_r any (default null)
$0.b_h any (default null)
$0.rest ...any
config (object) object

Hard shrink layer

new HardShrinkLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.l any (default 0.5)
$0.rest ...any
config (object) object

Hard sigmoid layer

new HardSigmoidLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 0.2)
$0.beta any (default 0.5)
$0.rest ...any
config (object) object

Hard tanh layer

new HardTanhLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.v any (default 1)
$0.rest ...any
config (object) object

Hexpo layer

new HexpoLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.b any (default 1)
$0.c any (default 1)
$0.d any (default 1)
$0.rest ...any
config (object) object

Huber loss layer

new HuberLayer()

Extends Layer

Include layer

new IncludeLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.net any
$0.input_to any (default null)
$0.train any (default true)
$0.rest ...any
config (object) object

Input layer

new InputLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.name any (default null)
$0.rest ...any
config (object) object

Improved sigmoid layer

new ImprovedSigmoidLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.alpha any (default 1)
$0.rest ...any
config (object) object

Layer normalization layer

new LayerNormalizationLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.epsilon any (default 1.0e-12)
$0.scale any (default 1)
$0.offset any (default 0)
$0.rest ...any
config (object) object

Leaky ReLU layer

new LeakyReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 0.1)
$0.rest ...any
config (object) config

Log softmax layer

new LogSoftmaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.rest ...any
config (object) object

Lp pool layer

new LpPoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.p any (default 2)
$0.kernel any
$0.stride any (default null)
$0.padding any (default null)
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

LRN layer

new LRNLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 0.0001)
$0.beta any (default 0.75)
$0.k any (default 2)
$0.n any
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

LSTM layer

new LSTMLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.return_sequences any (default false)
$0.w_z any (default null)
$0.w_in any (default null)
$0.w_for any (default null)
$0.w_out any (default null)
$0.r_z any (default null)
$0.r_in any (default null)
$0.r_for any (default null)
$0.r_out any (default null)
$0.p_in any (default null)
$0.p_for any (default null)
$0.p_out any (default null)
$0.b_z any (default null)
$0.b_in any (default null)
$0.b_for any (default null)
$0.b_out any (default null)
$0.rest ...any
config (object) object

Matrix multiply layer

new MatmulLayer()

Extends Layer

Max pool layer

new MaxPoolLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.kernel any
$0.stride any (default null)
$0.padding any (default null)
$0.channel_dim any (default -1)
$0.rest ...any
config (object) object

Reduce mean layer

new MeanLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

MultipleParametricELULayer

lib/model/nns/layer/mpelu.js

Multiple parametric ELU layer

new MultipleParametricELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.beta any (default 1)
$0.rest ...any
config (object) config

MSE loss layer

new MSELayer()

Extends Layer

MultibinTrainableLinearUnitLayer

lib/model/nns/layer/mtlu.js

Multibin trainable linear unit layer

new MultibinTrainableLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.b any (default 0)
$0.c any (default null)
$0.k any (default 10)
$0.rest ...any
config (object) config

NaturalLogarithmReLULayer

lib/model/nns/layer/nlrelu.js

Natural logarithm ReLU layer

new NaturalLogarithmReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 1)
$0.rest ...any
config (object) config

One-hot layer

new OnehotLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.class_size any (default null)
$0.values any (default [])
$0.rest ...any
config (object) config

Output layer

new OutputLayer()

Extends Layer

PadeActivationUnitLayer

lib/model/nns/layer/pau.js

Pade activation unit layer

new PadeActivationUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.m any (default 2)
$0.n any (default 2)
$0.a any (default 0.1)
$0.b any (default 0)
$0.rest ...any
config (object) config

ParametricDeformableELULayer

lib/model/nns/layer/pdelu.js

Parametric deformable ELU layer

new ParametricDeformableELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.t any (default 0.1)
$0.alpha any (default 1)
$0.rest ...any
config (object) config

ParametricELULayer

lib/model/nns/layer/pelu.js

Parametric ELU layer

new ParametricELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.b any (default 1)
$0.rest ...any
config (object) config

PiecewiseLinearUnitLayer

lib/model/nns/layer/plu.js

Piecewise linear unit layer

new PiecewiseLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 0.1)
$0.c any (default 1)
$0.rest ...any
config (object) config

ParametricReLULayer

lib/model/nns/layer/prelu.js

Parametric ReLU layer

new ParametricReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 0.25)
$0.rest ...any
config (object) config

ParametricRectifiedExponentialUnitLayer

lib/model/nns/layer/preu.js

Parametric rectified exponential unit layer

new ParametricRectifiedExponentialUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.beta any (default 1)
$0.rest ...any
config (object) config

Reduce product layer

new ProdLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

ParametricSigmoidFunctionLayer

lib/model/nns/layer/psf.js

Parametric sigmoid function layer

new ParametricSigmoidFunctionLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.m any (default 2)
$0.rest ...any
config (object) config

Penalized tanh layer

new PenalizedTanhLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 0.25)
$0.rest ...any
config (object) config

ParametricTanhLinearUnitLayer

lib/model/nns/layer/ptelu.js

Parametric tanh linear unit layer

new ParametricTanhLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.beta any (default 1)
$0.rest ...any
config (object) config

Random layer

new RandomLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.mean any (default 0)
$0.variance any (default 1)
$0.rest ...any
config (object) config

Reduce max layer

new ReduceMaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

Reduce min layer

new ReduceMinLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

RectifiedPowerUnitLayer

lib/model/nns/layer/repu.js

Rectified power unit layer

new RectifiedPowerUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.s any (default 2)
$0.rest ...any
config (object) config

Reshape layer

new ReshapeLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.rest ...any
config (object) config

Simple RNN layer

new RNNLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.out_size any (default null)
$0.activation any (default 'tanh')
$0.recurrent_activation any (default 'sigmoid')
$0.return_sequences any (default false)
$0.w_xh any (default null)
$0.w_hh any (default null)
$0.w_hy any (default null)
$0.b_xh any (default null)
$0.b_hh any (default null)
$0.b_hy any (default null)
$0.activation_params any (default {})
$0.recurrent_activation_params any (default {})
$0.rest ...any
config (object) object

RandomizedReLULayer

lib/model/nns/layer/rrelu.js

Randomized ReLU layer

new RandomizedReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.l any (default 1.0/8)
$0.u any (default 1.0/3)
$0.rest ...any
config (object) config

RandomTranslationReLULayer

lib/model/nns/layer/rtrelu.js

Random translation ReLU layer

new RandomTranslationReLULayer($0: Object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.rest ...any

Scaled ELU layer

new ScaledELULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1.67326319217681884765625)
$0.g any (default 1.05070102214813232421875)
$0.rest ...any
config (object) config

Sigmoid layer

new SigmoidLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.rest ...any
config (object) config

SelfLearnableAFLayer

lib/model/nns/layer/slaf.js

Self learnable AF layer

new SelfLearnableAFLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.n any (default 3)
$0.a any (default 1)
$0.rest ...any
config (object) config

SoftplusLinearUnitLayer

lib/model/nns/layer/slu.js

Softplus linear unit layer

new SoftplusLinearUnitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 1)
$0.beta any (default 1)
$0.gamma any (default 0)
$0.rest ...any
config (object) config

Soft shrink layer

new SoftShrinkLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.l any (default 0.5)
$0.rest ...any
config (object) config

Softargmax layer

new SoftargmaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 10000)
$0.rest ...any
config (object) config

Softmax layer

new SoftmaxLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.rest ...any
config (object) object

Softmin layer

new SoftminLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.rest ...any
config (object) object

Softplus layer

new SoftplusLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 1)
$0.rest ...any
config (object) config

Sparse layer

new SparseLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.rho any
$0.beta any
$0.rest ...any
config (object) config

Split layer

new SplitLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default 1)
$0.size any
$0.rest ...any
config (object) config

Shifted ReLU layer

new ShiftedReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.d any (default 0)
$0.rest ...any
config (object) config

Soft root sign layer

new SoftRootSignLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.alpha any (default 3)
$0.beta any (default 2)
$0.rest ...any
config (object) config

Scaled tanh layer

new ScaledTanhLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1)
$0.b any (default 1)
$0.rest ...any
config (object) config

Standard deviation layer

new StdLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

Reduce sum layer

new SumLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

Supervisor layer

new SupervisorLayer()

Extends Layer

Swish layer

new SwishLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.beta any (default 1)
$0.rest ...any
config (object) config

Trainable AF layer

new TrainableAFLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 0)
$0.b any (default 0)
$0.rest ...any
config (object) config

Thresholded ReLU layer

new ThresholdedReLULayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.a any (default 1.0)
$0.rest ...any
config (object) config

Transpose layer

new TransposeLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any
$0.rest ...any
config (object) config

Variable layer

new VariableLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.size any
$0.l2_decay any (default 0)
$0.l1_decay any (default 0)
$0.value any (default null)
$0.rest ...any
config (object) config

Variance layer

new VarLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default -1)
$0.keepdims any (default true)
$0.rest ...any
config (object) config

NiblackThresholding

lib/model/niblack.js

Niblack thresholding

new NiblackThresholding(n: number, k: number)
Parameters
n (number = 3) Size of local range
k (number = 0.1) Tuning parameter
Instance Members
predict(x)

Flow-based generative model non-linear independent component estimation

new NICE(layer_number: number, optimizer: string)
Parameters
layer_number (number) Number of layers
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(x, iteration, rate, batch_size)
predict(x)
generate(z)

Reverse layer

new ReverseLayer($0: Object, config: object)

Extends Layer

Parameters
$0 (Object)
NameDescription
$0.axis any (default 1)
$0.rest ...any
config (object) config

Non-local means filter

new NLMeans(n: number, h: number)
Parameters
n (number) Manhattan distance of the pixel to the nearest neighbor
h (number) Degree of filtering
Instance Members
predict(x)

Non-negative matrix factorization

new NMF()
Instance Members
init(x, rd)
fit()
predict()

Natural Neighborhood Based Classification Algorithm

new NNBCA(metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
fit(datas, targets)
predict(datas)

Normal Herd

new NormalHERD(type: ("full" | "exact" | "project" | "drop"), c: number)
Parameters
type (("full" | "exact" | "project" | "drop") = exact) Method name
c (number = 0.1) Tradeoff value between passiveness and aggressiveness
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

One-class support vector machine

new OCSVM(nu: number, kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
nu (number) Nu
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(x)
fit()
predict(x)

Outlier Detection using Indegree Number

new ODIN(k: number, t: number)
Parameters
k (number = 5) Number of neighborhoods
t (number = 0) Indegree threshold
Instance Members
predict(data)

OnlineGradientDescent

lib/model/ogd.js

Online gradient descent

new OnlineGradientDescent(c: number, loss: "zero_one")
Parameters
c (number = 1) Tuning parameter
loss ("zero_one" = zero_one) Loss type name
Instance Members
update(x, y)
fit(x, y)
predict(data)

Ordering points to identify the clustering structure

new OPTICS(eps: number, minPts: number, metric: ("euclid" | "manhattan" | "chebyshev"))
Parameters
eps (number = Infinity) Radius to determine neighborhood
minPts (number = 5) Number of neighborhood with core distance
metric (("euclid" | "manhattan" | "chebyshev") = euclid) Metric name
Instance Members
fit(datas)
predict(threshold)

arbitrarily ORiented projected CLUSter generation

new ORCLUS(k: number, k0: number, l: number)
Parameters
k (number) Number of clusters
k0 (number) Number of begining seeds
l (number) Number of dimensions
Instance Members
fit(datas)
predict(datas)

OtsusThresholding

lib/model/otsu.js

Otus's thresholding

new OtsusThresholding()
Instance Members
predict(x)

Partitioning Around Medoids

new PAM(k: number)
Parameters
k (number) Number of clusters
Instance Members
init(datas)
fit()
predict()

Particle filter

new ParticleFilter()
Instance Members
fit(z)

Passing-Bablok method

new PassingBablok()
Instance Members
fit(x, y)
predict(x)

Passive Aggressive

new PA(v: (0 | 1 | 2))
Parameters
v ((0 | 1 | 2) = 0) Version number
Instance Members
update(x, y)
fit(x, y)
predict(data)

Perceptron Algorithm with Uneven Margins

new PAUM(rate: number, tp: number, tm: number)
Parameters
rate (number) Learning rate
tp (number) Margin parameter for +1
tm (number) Margin parameter for -1
Instance Members
fit(x, y)
predict(data)

Principal component analysis

new PCA()
Instance Members
fit(x)
predict(x, rd)

Dual Principal component analysis

new DualPCA()
Instance Members
fit(x)
predict(x, rd)

Kernel Principal component analysis

new KernelPCA(kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
fit(x)
predict(x, rd)

Principal component analysis for anomaly detection

new AnomalyPCA()

Extends PCA

Instance Members
fit(x)
predict(x)

PossibilisticCMeans

lib/model/pcm.js

Possibilistic c-means

new PossibilisticCMeans(m: number)
Parameters
m (number = 2) Fuzziness factor
Instance Members
init(datas)
add()
fit()
predict()

Principal component regression

new PCR()
Instance Members
fit(x, y)
predict(x)

Primal Estimated sub-GrAdientSOlver for SVM

new Pegasos(rate: number, k: number)
Parameters
rate (number) Learning rate
k (number = 1) Batch size
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

PercentileAnormaly

lib/model/percentile.js

Percentile anomaly detection

new PercentileAnormaly(percentile: number, distribution: ("data" | "normal"))
Parameters
percentile (number) Percentile value
distribution (("data" | "normal") = data) Distribution name
Instance Members
fit(data)
predict(x)

Perceptron

new Perceptron(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

AveragedPerceptron

lib/model/perceptron.js

Averaged perceptron

new AveragedPerceptron(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

MulticlassPerceptron

lib/model/perceptron.js

Multiclass perceptron

new MulticlassPerceptron(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

PhansalkarThresholding

lib/model/phansalkar.js

Phansalkar thresholding

new PhansalkarThresholding(n: number, k: number, r: number, p: number, q: number)
Parameters
n (number = 3) Size of local range
k (number = 0.25) Tuning parameter
r (number = 0.5) Tuning parameter
p (number = 2) Tuning parameter
q (number = 10) Tuning parameter
Instance Members
predict(x)

Partial least squares regression

new PLS(l: number)
Parameters
l (number) Limit on the number of latent factors
Instance Members
init(x, y)
fit()
predict(x)

Probabilistic latent semantic analysis

new PLSA(k: number)
Parameters
k (number = 2) Number of clusters
Instance Members
init(x)
fit()
predict()

PoissonRegression

lib/model/poisson.js

Poisson regression

new PoissonRegression(rate: number)
Parameters
rate (number) Learning rate
Instance Members
fit(x, y)
predict(x)

Policy gradient agent

new PGAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
reset()
get_score()
get_action(state)
update(action, state, reward, done, learning_rate)

Polynomial histogram

new PolynomialHistogram(p: number, h: number)
Parameters
p (number = 2) Order
h (number = 0.1) Bin size
Instance Members
fit(x)
predict(x)

Polynomial interpolation

new PolynomialInterpolation()
Instance Members
fit(x, y)
predict(x)

ProjectionPursuit

lib/model/ppr.js

Projection pursuit regression

new ProjectionPursuit(r: number)
Parameters
r (number = 5) Number of functions
Instance Members
fit(x, y)
predict(x)

Prewitt edge detection

new Prewitt(th: number)
Parameters
th (number) Threshold
Instance Members
predict(x)

Priestley–Chao kernel estimator

new PriestleyChao(h: number)
Parameters
h (number) Smoothing parameter for the kernel
Instance Members
fit(x, y)
predict(x)

Principal curves

new PrincipalCurve()
Instance Members
fit(x)
predict()

Probabilistic Principal component analysis

new ProbabilisticPCA(method: ("analysis" | "em" | "bayes"), rd: number)
Parameters
method (("analysis" | "em" | "bayes") = analysis) Method name
rd (number) Reduced dimension
Instance Members
fit(x)
predict(x)
ProbabilityModel

Type: object

Properties
fit (function (Array<Array<number>>): void) : Fit model
probability (function (Array<Array<number>>): Array<number>) : Returns predicted values

Probability based classifier

new ProbabilityBasedClassifier(model: any)
Parameters
model (any)
Instance Members
fit(x, y)
predict(x)

Probit

new Probit()
Instance Members
init(train_x, train_y)
fit()
predict(data)

MultinomialProbit

lib/model/probit.js

Multinomial probit

new MultinomialProbit()

Extends Probit

Instance Members
fit(x, y)
predict(data)

PROjected CLUStering algorithm

new PROCLUS(k: number, a: number, b: number, l: number, minDeviation: number)
Parameters
k (number) Number of clusters
a (number) Number to multiply the number of clusters for sample size
b (number) Number to multiply the number of clusters for final set size
l (number) Average dimensions
minDeviation (number = 0.1) Minimum deviation to check the medoid is bad
Instance Members
init(datas)
fit()
predict()
outliers()

Projectron

new Projectron(eta: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
eta (number = 0) Threshold
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Projectron++

new Projectronpp(eta: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
eta (number = 0) Threshold
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

P-tile thresholding

new PTile(p: number)
Parameters
p (number = 0.5) Percentile value
Instance Members
predict(x)

Base class for Q-table

new QTableBase(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
tensor
states
actions
resolution
toArray()
best_action(state)

Q-learning agent

new QAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
get_score()
get_action(state, greedy_rate)
update(action, state, next_state, reward)

Quadratic discriminant analysis

new QuadraticDiscriminant()
Instance Members
fit(x, y)
predict(data)

Quantile regression

new QuantileRegression(tau: number)
Parameters
tau (number = 0.5) Quantile value
Instance Members
fit(x, y, learningRate)
predict(x)

Bsae class for radius neighbor models

new RadiusNeighborBase(r: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))
Parameters
r (number = 1) Radius to determine neighborhood
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
_add(point, category?)

radius neighbor

new RadiusNeighbor(r: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends RadiusNeighborBase

Parameters
r (number = 1) Radius to determine neighborhood
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

RadiusNeighborRegression

lib/model/radius_neighbor.js

radius neighbor regression

new RadiusNeighborRegression(r: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends RadiusNeighborBase

Parameters
r (number = 1) Radius to determine neighborhood
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict(datas)

SemiSupervisedRadiusNeighbor

lib/model/radius_neighbor.js

Semi-supervised radius neighbor

new SemiSupervisedRadiusNeighbor(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"))

Extends RadiusNeighborBase

Parameters
k (number = 5) Radius to determine neighborhood
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
Instance Members
add(point, category)
fit(datas, targets)
predict()

Ramer-Douglas-Peucker algorithm

new RamerDouglasPeucker(e: number)
Parameters
e (number = 0.1) Threshold of distance
Instance Members
fit(x, y)
predict(x)

Bsae class for random forest models

new RandomForest(tree_num: number, sampling_rate: number, tree_class: (DecisionTreeClassifier | DecisionTreeRegression), tree_class_args: Array<any>?)
Parameters
tree_num (number) Number of trees
sampling_rate (number = 0.8) Sampling rate
tree_class_args (Array<any>? = null) Arguments for constructor of tree class
Instance Members
depth
init(datas, targets)
fit()
predict_prob(datas)

RandomForestClassifier

lib/model/random_forest.js

Random forest classifier

new RandomForestClassifier(tree_num: number, sampling_rate: number, method: ("ID3" | "CART"))

Extends RandomForest

Parameters
tree_num (number) Number of trees
sampling_rate (number = 0.8) Sampling rate
method (("ID3" | "CART") = CART) Method name
Instance Members
predict(datas)

RandomForestRegressor

lib/model/random_forest.js

Random forest regressor

new RandomForestRegressor(tree_num: number, sampling_rate: number)

Extends RandomForest

Parameters
tree_num (number) Number of trees
sampling_rate (number = 0.8) Sampling rate
Instance Members
predict(datas)

Random projection

new RandomProjection(init: ("uniform" | "root3" | "normal"))
Parameters
init (("uniform" | "root3" | "normal") = uniform) Initialize method name
Instance Members
predict(x, rd)

RANSACSubModel

lib/model/ransac.js
RANSACSubModel

Type: object

Properties
fit (function (Array<Array<number>>, Array<any>): void) : Fit model
predict (function (Array<Array<number>>): Array<any>) : Returns predicted values
score (function (Array<any>, Array<any>): number?) : Returns a number how accurate the prediction is

Random sample consensus

new RANSAC(model: any, sample: (number | null))
Parameters
model (any)
sample ((number | null) = null) Sampling rate
Instance Members
fit(x, y)
predict(x)

RadialBasisFunctionNetwork

lib/model/rbf.js

Radial basis function network

new RadialBasisFunctionNetwork(rbf: ("linear" | "gaussian" | "multiquadric" | "inverse quadratic" | "inverse multiquadric" | "thin plate" | "bump"), e: number, l: number)
Parameters
rbf (("linear" | "gaussian" | "multiquadric" | "inverse quadratic" | "inverse multiquadric" | "thin plate" | "bump") = linear) RBF name
e (number = 1) Tuning parameter
l (number = 0) Regularization parameter
Instance Members
fit(x, y)
predict(target)

Restricted Boltzmann machine

new RBM(hiddenSize: number, lr: number)
Parameters
hiddenSize (number) Size of hidden layer
lr (number = 0.01) Learning rate
Instance Members
fit(x)
energy(v, h)
predict(x)

Gaussian-Bernouili Restricted Boltzmann machine

new GBRBM(hiddenSize: number, lr: number, fixSigma: boolean)
Parameters
hiddenSize (number) Size of hidden layer
lr (number = 0.01) Learning rate
fixSigma (boolean = false) Do not learn sigma or not
Instance Members
fit(x)
energy(v, h)
predict(x)

Randomized Budget Perceptron

new RBP(b: number)
Parameters
b (number) Number of support vectors
Instance Members
fit(x, y)
predict(data)

Relative Density Factor

new RDF(r: number)
Parameters
r (number = 1.0) Radius
Instance Members
predict(datas)

Relative Density-based Outlier Score

new RDOS(k: number, h: number, kernel: ("gaussian" | function (Array<number>): number))
Parameters
k (number) Number of neighborhoods
h (number) Kernel width
kernel (("gaussian" | function (Array<number>): number) = gaussian) Kernel name
Instance Members
predict(datas)

Ridge regressioin

new Ridge(lambda: number)
Parameters
lambda (number = 0.1) Regularization strength
Instance Members
fit(x, y)
predict(x)
importance()

Kernel ridge regression

new KernelRidge(lambda: number, kernel: ("gaussian" | function (Array<number>, Array<number>): number))
Parameters
lambda (number = 0.1) Regularization strength
kernel (("gaussian" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(x)
importance()

Robust Kernel-based Outlier Factor

new RKOF(k: number, h: number, alpha: number, kernel: ("gaussian" | "epanechnikov" | "volcano" | function (Array<number>): number))
Parameters
k (number) Number of neighborhoods
h (number) Smoothing parameter
alpha (number) Sensitivity parameter
kernel (("gaussian" | "epanechnikov" | "volcano" | function (Array<number>): number) = gaussian) Kernel name
Instance Members
predict(datas)

RecursiveLeastSquares

lib/model/rls.js

Recursive least squares

new RecursiveLeastSquares()
Instance Members
update(x, y)
fit(x, y)
predict(data)

RepeatedMedianRegression

lib/model/rmr.js

Repeated median regression

new RepeatedMedianRegression()
Instance Members
fit(x, y)
predict(x)

Recurrent neuralnetwork

new RNN(method: ("rnn" | "lstm" | "gru"), window: number, unit: number, out_size: number, optimizer: string)
Parameters
method (("rnn" | "lstm" | "gru") = lstm) Method name
window (number = 10) Window size
unit (number = 10) Size of recurrent unit
out_size (number = 1) Output size
optimizer (string = adam) Optimizer of the network
Instance Members
method
epoch
fit(train_x, train_y, iteration, rate, batch)
predict(data, k)

Roberts cross

new RobertsCross(th: number)
Parameters
th (number) Threshold
Instance Members
predict(x)

Robust scaler

new RobustScaler()
Instance Members
fit(x)
predict(x)
ROCKNode

Type: object

Properties
point (Array<number>?) : Data point of leaf node
index (number?) : Data index of leaf node
g (number) : Number of leaf nodes
distance (number?) : Distance between children nodes
children (Array<ROCKNode>?) : Children nodes
leafs (Array<ROCKNode>) : Leaf nodes

RObust Clustering using linKs

new ROCK(th: number)
Parameters
th (number) Threshold
Instance Members
fit(data)
getClusters(number)
predict(k)

Relaxed Online Maximum Margin Algorithm

new ROMMA()
Instance Members
update(x, y)
fit(x, y)
predict(data)

AggressiveROMMA

lib/model/romma.js

Aggressive Relaxed Online Maximum Margin Algorithm

new AggressiveROMMA()

Extends ROMMA

Relevance vector machine

new RVM()
Instance Members
fit(x, y)
predict(x)

Semi-Supervised Support Vector Machine

new S3VM(kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(x, y)
fit()
predict(data)

Sammon mapping

new Sammon(x: Array<Array<number>>, rd: number)
Parameters
x (Array<Array<number>>) Sample data
rd (number) Reduced dimension
Instance Members
fit()
predict()

SARSA agent

new SARSAAgent(env: RLEnvironmentBase, resolution: number)
Parameters
env (RLEnvironmentBase) Environment
resolution (number = 20) Resolution
Instance Members
reset()
get_score()
get_action(state, greedy_rate)
update(action, state, next_state, reward)

SauvolaThresholding

lib/model/sauvola.js

sauvola thresholding

new SauvolaThresholding(n: number, k: number, r: number)
Parameters
n (number = 3) Size of local range
k (number = 0.1) Tuning parameter
r (number = 1) Tuning parameter
Instance Members
predict(x)

SavitzkyGolayFilter

lib/model/savitzky_golay.js

Savitzky-Golay filter

new SavitzkyGolayFilter(k: number)
Parameters
k (number) Number of coefficients
Instance Members
predict(x)

Sequentially Discounting Autoregressive model

new SDAR(p: number, r: number)
Deprecated: Does not work properly
Parameters
p (number = 1) Order
r (number = 0.8) Forgetting factor
Instance Members
probability(data)
predict(data, k)

SegmentedRegression

lib/model/segmented.js

Segmented regression

new SegmentedRegression(seg: number)
Parameters
seg (number = 3) Number of segments
Instance Members
fit(x, y)
predict(x)

Selective Naive bayes

new SelectiveNaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
predict(data)

Selective sampling Perceptron

new SelectiveSamplingPerceptron(b: number, rate: number)
Parameters
b (number) Smooth parameter
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

SelectiveSamplingAdaptivePerceptron

lib/model/selective_sampling_perceptron.js

Selective sampling Perceptron with adaptive parameter

new SelectiveSamplingAdaptivePerceptron(beta: number, rate: number)
Parameters
beta (number) Smooth parameter
rate (number) Learning rate
Instance Members
fit(x, y)
predict(data)

Selective sampling second-order Perceptron

new SelectiveSamplingSOP(b: number)
Parameters
b (number) Smooth parameter
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

Selective sampling Winnow

new SelectiveSamplingWinnow(b: number, alpha: boolean)
Parameters
b (number) Smooth parameter
alpha (boolean = 2) Learning rate
Instance Members
fit(x, y)
predict(data)

Self-training

new SelfTraining(model: object, threshold: number)
Parameters
model (object) View
threshold (number) Threshold
Instance Members
init(x, y)
fit()
predict()

Semi-supervised naive bayes

new SemiSupervisedNaiveBayes(lambda: number)
Parameters
lambda (number = 1) Weight applied to the contribution of the unlabeled data
Instance Members
init(datas, labels)
probability(datas)
logLikelihood()
predict(datas)

SezanThresholding

lib/model/sezan.js

Sezan's thresholding

new SezanThresholding(gamma: number, sigma: number)
Parameters
gamma (number = 0.5) Tradeoff value between black and white
sigma (number = 5) Sigma of normal distribution
Instance Members
predict(x)

Shifting Perceptron Algorithm

new ShiftingPerceptron(lambda: number)
Parameters
lambda (number) Rate of weight decay
Instance Members
fit(x, y)
predict(data)

Implicit online Learning with Kernels

new ILK(eta: number, lambda: number, c: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), loss: ("square" | "hinge" | "logistic"))
Parameters
eta (number = 1) Learning rate
lambda (number = 1) Regularization constant
c (number = 1) Penalty imposed on point prediction violations.
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
loss (("square" | "hinge" | "logistic") = hinge) Loss type name
Instance Members
update(x, y)
fit(x, y)
predict(data)

Sparse Implicit online Learning with Kernels

new SILK(eta: number, lambda: number, c: number, w: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), loss: ("square" | "hinge" | "graph" | "logistic"))

Extends ILK

Parameters
eta (number = 1) Learning rate
lambda (number = 1) Regularization constant
c (number = 1) Penalty imposed on point prediction violations.
w (number = 10) Buffer size
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
loss (("square" | "hinge" | "graph" | "logistic") = hinge) Loss type name
Instance Members
update(x, y)

Sinc interpolation

new SincInterpolation()
Instance Members
fit(values)
predict(index)

SlicedInverseRegression

lib/model/sir.js

Sliced inverse regression

new SlicedInverseRegression(s: number)
Parameters
s (number) Number of slices
Instance Members
predict(x, y, rd)

Spherical linear interpolation

new Slerp(o: number)
Parameters
o (number = 1) Angle subtended by the arc
Instance Members
fit(x, y)
predict(target)

slice sampling

new SliceSampling(targetFunc: function (Array<number>): number, d: number, w: number)
Parameters
targetFunc (function (Array<number>): number) Target distribution
d (number) Output size
w (number = 1.0) Check width
Instance Members
sample(n)

SMARegression

lib/model/sma.js

Standardizes Major Axis regression

new SMARegression()
Instance Members
fit(x, y)
predict(x)

SmirnovGrubbs test

new SmirnovGrubbs(alpha: number)
Parameters
alpha (number) Significance level
Instance Members
predict(data)

SmoothstepInterpolation

lib/model/smoothstep.js

Smoothstep interpolation

new SmoothstepInterpolation(n: number)
Parameters
n (number = 1) Order
Instance Members
fit(x, y)
predict(target)

Snakes (active contour model)

new Snakes(alpha: number, beta: number, gamma: number, k: number)
Parameters
alpha (number) Penalty for length
beta (number) Penalty for curvature
gamma (number) Penalty for conformity with image
k (number = 100) Number of vertices
Instance Members
init(x)
fit()
predict()

Sobel edge detection

new Sobel(th: number)
Parameters
th (number) Threshold
Instance Members
predict(x)

Soft k-means

new SoftKMeans(beta: number)
Parameters
beta (number = 1) Tuning parameter
Instance Members
init(datas)
add()
fit()
predict()

Self-Organizing Map

new SOM(input_size: number, output_size: number, resolution: number)
Parameters
input_size (number) Input size
output_size (number) Output size
resolution (number = 20) Resolution of output
Instance Members
fit(data)
predict(x)

SecondOrderPerceptron

lib/model/sop.js

Second order perceptron

new SecondOrderPerceptron(a: number)
Parameters
a (number = 1) Tuning parameter
Instance Members
init(train_x, train_y)
update(x, y)
fit()
predict(data)

SpectralClustering

lib/model/spectral.js

Spectral clustering

new SpectralClustering(affinity: ("rbf" | "knn"), param: object)
Parameters
affinity (("rbf" | "knn") = rbf) Affinity type name
param (object = {}) Config
Instance Members
size
epoch
init(datas)
add()
clear()
predict()
fit()

SmoothingSpline

lib/model/spline.js

Spline smoothing

new SmoothingSpline(l: number)
Parameters
l (number) Smoothing parameter
Instance Members
fit(x, y)
predict(data)

Spline interpolation

new SplineInterpolation()
Instance Members
fit(x, y)
predict(target)

Split and merge segmentation

new SplitAndMerge(method: ("variance" | "uniformity"), threshold: number)
Parameters
method (("variance" | "uniformity") = variance) Method name
threshold (number = 0.1) Threshold
Instance Members
predict(x)

Squared-loss Mutual information change point detection

new SquaredLossMICPD(model: object, w: number, take: number?, lag: number?)
Parameters
model (object) Density ratio estimation model
w (number) Window size
take (number?) Take number
lag (number?) Lag
Instance Members
predict(datas)

Singular-spectrum transformation

new SST(w: number, take: number?, lag: number?)
Parameters
w (number) Window size
take (number?) Take number
lag (number?) Lag
Instance Members
predict(datas)

Standardization

new Standardization(ddof: number)
Parameters
ddof (number = 0) Delta Degrees of Freedom
Instance Members
fit(x)
predict(x)

Statistical Region Merging

new StatisticalRegionMerging(t: number)
Parameters
t (number) Threshold
Instance Members
predict(x)

STatistical INformation Grid-based method

new STING()
Deprecated: Not implemented
Instance Members
fit(datas)
predict(datas)

Stoptron

new Stoptron(n: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number))
Parameters
n (number = 10) Cachs size
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
Instance Members
fit(x, y)
predict(data)

Support vector clustering

new SVC(kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
size
init(x)
fit()
predict()

Support vector machine

new SVM(kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(train_x, train_y)
fit()
predict(data)

Support vector regression

new SVR(kernel: ("gaussian" | "linear" | function (Array<number>, Array<number>): number), kernelArgs: Array<any>?)
Parameters
kernel (("gaussian" | "linear" | function (Array<number>, Array<number>): number)) Kernel name
kernelArgs (Array<any>? = []) Arguments for kernel
Instance Members
init(x, y)
fit()
predict(x)

TheilSenRegression

lib/model/theil_sen.js

Theil-Sen regression

new TheilSenRegression()
Instance Members
fit(x, y)
predict(x)

Thompson test

new Thompson(alpha: number)
Parameters
alpha (number) Significance level
Instance Members
predict(data)

Tietjen-Moore Test

new TietjenMoore(k: number)
Parameters
k (number) Number of outliers
Instance Members
predict(data, threshold)

Tighter Budget Perceptron

new TighterPerceptron(beta: number, p: number, update: ("perceptron" | "mira" | "nobias"))
Parameters
beta (number = 0) Margine
p (number = 0) Cachs size
update (("perceptron" | "mira" | "nobias") = perceptron) Update rule
Instance Members
fit(x, y)
predict(data)

Tightest Perceptron

new TightestPerceptron(b: number, kernel: ("gaussian" | "polynomial" | function (Array<number>, Array<number>): number), accuracyLoss: ("zero_one" | "hinge"))
Parameters
b (number = 10) Budget size
kernel (("gaussian" | "polynomial" | function (Array<number>, Array<number>): number) = gaussian) Kernel name
accuracyLoss (("zero_one" | "hinge") = hinge) Accuracy loss type name
Instance Members
fit(x, y)
predict(data)

Trigonometric interpolation

new TrigonometricInterpolation()
Instance Members
fit(x, y)
predict(target)

Stochastic Neighbor Embedding

new SNE(datas: Array<Array<number>>, rd: number, perplexity: number)
Parameters
datas (Array<Array<number>>) Training data
rd (number = 1) Reduced dimension
perplexity (number = 30) Perplexity
Instance Members
fit()
predict()

T-distributed Stochastic Neighbor Embedding

new tSNE(datas: Array<Array<number>>, rd: number, perplexity: number)
Parameters
datas (Array<Array<number>>) Training data
rd (number = 1) Reduced dimension
perplexity (number = 30) Perplexity
Instance Members
fit()
predict()

Tukey regression

new TukeyRegression(e: number)
Parameters
e (number) Error tolerance
Instance Members
fit(x, y)
predict(x)

Tukey's fences

new TukeysFences(k: number)
Parameters
k (number) Tuning parameter
Instance Members
predict(data)

Relative unconstrained Least-Squares Importance Fitting

new RuLSIF(sigma: Array<number>, lambda: Array<number>, alpha: number, kernelNum: number)
Parameters
sigma (Array<number>) Sigmas of normal distribution
lambda (Array<number>) Regularization parameters
alpha (number) Relative parameter
kernelNum (number) Number of kernels
Instance Members
fit(x1, x2)
predict(x)

unconstrained Least-Squares Importance Fitting

new uLSIF(sigma: Array<number>, lambda: Array<number>, kernelNum: number)

Extends RuLSIF

Parameters
sigma (Array<number>) Sigma of normal distribution
lambda (Array<number>) Regularization parameters
kernelNum (number) Number of kernels

Uniform Manifold Approximation and Projection

new UMAP(datas: Array<Array<number>>, rd: number, n: number, min_dist: number)
Parameters
datas (Array<Array<number>>) Training data
rd (number) Reduced dimension
n (number = 10) Number of neighborhoods
min_dist (number = 0.1) Minimum distance
Instance Members
fit()
predict()

Universal-set Naive bayes

new UniversalSetNaiveBayes(distribution: "gaussian")
Parameters
distribution ("gaussian" = gaussian) Distribution name
Instance Members
fit(datas, labels)
predict(data)

Variational Autoencoder

new VAE(in_size: number, noise_dim: number, enc_layers: Array<Object<string, any>>, dec_layers: Array<Object<string, any>>, optimizer: string, class_size: (number | null), type: ("" | "conditional"))
Parameters
in_size (number) Input size
noise_dim (number) Number of noise dimension
enc_layers (Array<Object<string, any>>) Layers of encoder
dec_layers (Array<Object<string, any>>) Layers of decoder
optimizer (string) Optimizer of the network
class_size ((number | null)) Class size for conditional type
type (("" | "conditional")) Type name
Instance Members
epoch
fit(x, y, iteration, rate, batch)
predict(x, y)
reduce(x, y)

Vector Autoregressive model

new VAR(p: number)
Parameters
p (number) Order
Instance Members
fit(data)
predict(data, k)

Variational Gaussian Mixture Model

new VBGMM(a: number, b: number, k: number)
Parameters
a (number) Tuning parameter
b (number) Tuning parameter
k (number) Initial number of clusters
Instance Members
means
covs
effectivity
init(datas)
fit()
probability(data)
predict(data)

Voted-perceptron

new VotedPerceptron(rate: number)
Parameters
rate (number = 1) Learning rate
Instance Members
fit(x, y)
predict(data)

Weighted k-means model

new WeightedKMeans(beta: number)
Parameters
beta (number) Tuning parameter
Instance Members
centroids
size
add(datas)
clear()
predict(datas)
fit(datas)

Weighted K-Nearest Neighbor

new WeightedKNN(k: number, metric: ("euclid" | "manhattan" | "chebyshev" | "minkowski"), weight: ("gaussian" | "rectangular" | "triangular" | "epanechnikov" | "quartic" | "triweight" | "cosine" | "inversion"))
Parameters
k (number) Number of neighbors
metric (("euclid" | "manhattan" | "chebyshev" | "minkowski") = euclid) Metric name
weight (("gaussian" | "rectangular" | "triangular" | "epanechnikov" | "quartic" | "triweight" | "cosine" | "inversion") = gaussian) Weighting scheme name
Instance Members
fit(x, y)
predict(data)

Weighted least squares

new WeightedLeastSquares()
Instance Members
fit(x, y, w)
predict(x)

Winnow

new Winnow(alpha: boolean, threshold: number?, version: (1 | 2))
Parameters
alpha (boolean = 2) Learning rate
threshold (number? = null) Threshold
version ((1 | 2) = 1) Version of model
Instance Members
fit(x, y)
predict(data)

Word2Vec

new Word2Vec(method: ("CBOW" | "skip-gram"), n: number, wordsOrNumber: (number | Array<string>), reduce_size: number, optimizer: string)
Parameters
method (("CBOW" | "skip-gram")) Method name
n (number) Number of how many adjacent words to learn
wordsOrNumber ((number | Array<string>)) Initial words or number of words
reduce_size (number) Reduced dimension
optimizer (string) Optimizer of the network
Instance Members
epoch
fit(words, iteration, rate, batch)
predict(x)
reduce(x)

eXtreme Gradient Boosting regression

new XGBoost(maxdepth: number, srate: number, lambda: number, lr: number)
Parameters
maxdepth (number = 1) Maximum depth of tree
srate (number = 1.0) Sampling rate
lambda (number = 0.1) Regularization parameter
lr (number = 0.5) Learning rate
Instance Members
size
init(x, y)
fit()
predict(x)

XGBoostClassifier

lib/model/xgboost.js

eXtreme Gradient Boosting classifier

new XGBoostClassifier(maxdepth: number, srate: number, lambda: number, lr: number)

Extends XGBoost

Parameters
maxdepth (number = 1) Maximum depth of tree
srate (number = 1.0) Sampling rate
lambda (number = 0.1) Regularization parameter
lr (number = 0) Learning rate
Instance Members
init(x, y)
predict(x)

x-means

new XMeans()
Instance Members
centroids
size
clear()
fit(datas, iterations)
predict(datas)

Yeo-Johnson power transformation

new YeoJohnson(lambda: number?)
Parameters
lambda (number? = null) Lambda
Instance Members
fit(x)
predict(x)

ZeroInflatedPoisson

lib/model/zip.js

Zero-inflated poisson

new ZeroInflatedPoisson()
Instance Members
fit(x)
probability(x)

ZeroTruncatedPoisson

lib/model/ztp.js

Zero-truncated poisson

new ZeroTruncatedPoisson()
Instance Members
fit(x)
probability(x)

AcrobotRLEnvironment

lib/rl/acrobot.js

Acrobot environment

new AcrobotRLEnvironment()

Extends RLEnvironmentBase

RLRealRange

lib/rl/base.js

Real number range state/actioin

new RLRealRange(min: number, max: number)
Parameters
min (number) Minimum value
max (number) Maximum value
Instance Members
toSpace(resolution)
toArray(resolution)
indexOf(value, resolution)

RLIntRange

lib/rl/base.js

Integer number range state/actioin

new RLIntRange(min: number, max: number)
Parameters
min (number) Minimum value
max (number) Maximum value
Instance Members
length
toArray(resolution)
indexOf(value, resolution)

RLEnvironmentBase

lib/rl/base.js

Base class for reinforcement learning environment

new RLEnvironmentBase()
Properties
actions (Array<(Array<any> | RLRealRange | RLIntRange)>) : Action variables
states (Array<(Array<any> | RLRealRange | RLIntRange)>) : States variables
Instance Members
epoch
reward
clone()
close()
reset()
state(agent)
setState(state, agent)
step(action, agent)
test(state, action, agent)
sample_action(agent)

EmptyRLEnvironment

lib/rl/base.js

Empty environment

new EmptyRLEnvironment()

Extends RLEnvironmentBase

BlackjackRLEnvironment

lib/rl/blackjack.js

Blackjack environment

new BlackjackRLEnvironment()

Extends RLEnvironmentBase

BreakerRLEnvironment

lib/rl/breaker.js

Breaker environment

new BreakerRLEnvironment()

Extends RLEnvironmentBase

CartPoleRLEnvironment

lib/rl/cartpole.js

Cartpole environment

new CartPoleRLEnvironment()

Extends RLEnvironmentBase

DraughtsRLEnvironment

lib/rl/draughts.js

Draughts environment

new DraughtsRLEnvironment()

Extends RLEnvironmentBase

GomokuRLEnvironment

lib/rl/gomoku.js

Gomoku environment

new GomokuRLEnvironment()

Extends RLEnvironmentBase

GridMazeRLEnvironment

lib/rl/grid.js

Grid world environment

new GridMazeRLEnvironment()

Extends RLEnvironmentBase

InHypercubeRLEnvironment

lib/rl/inhypercube.js

In-hypercube environment

new InHypercubeRLEnvironment(d: number)

Extends RLEnvironmentBase

Parameters
d (number = 2) Dimension of the environment

SmoothMazeRLEnvironment

lib/rl/maze.js

Smooth maze environment

new SmoothMazeRLEnvironment(width: number, height: number)

Extends RLEnvironmentBase

Parameters
width (number) Area width
height (number) Area height

MountainCarRLEnvironment

lib/rl/mountaincar.js

MountainCar environment

new MountainCarRLEnvironment()

Extends RLEnvironmentBase

PendulumRLEnvironment

lib/rl/pendulum.js

Pendulum environment

new PendulumRLEnvironment()

Extends RLEnvironmentBase

ReversiRLEnvironment

lib/rl/reversi.js

Reversi environment

new ReversiRLEnvironment()

Extends RLEnvironmentBase

WaterballRLEnvironment

lib/rl/waterball.js

Waterball environment

new WaterballRLEnvironment(width: number, height: number)

Extends RLEnvironmentBase

Parameters
width (number) Area width
height (number) Area height

Returns accuracy.

accuracy(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
Returns
number: Accuracy

Returns precision with macro average.

precision(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
Returns
number: Precision

Returns recall with macro average.

recall(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
Returns
number: Recall

Returns F-score with macro average.

fScore(pred: Array<any>, t: Array<any>, beta: number): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
beta (number = 1) Positive real factor. Recall is considered beta times as important as precision.
Returns
number: F-score

Returns Cohen's kappa coefficient.

cohensKappa(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted classes
t (Array<any>) True classes
Returns
number: Cohen's kappa coefficient

Returns Davies-Bouldin index.

davisBouldinIndex(data: Array<Array<number>>, pred: Array<any>, p: number, q: number): number
Parameters
data (Array<Array<number>>) Original data
pred (Array<any>) Predicted categories
p (number = 2) P
q (number = 1) Q
Returns
number: Davies-Bouldin index

silhouetteCoefficient

lib/evaluate/clustering.js

Returns Silhouette coefficient.

silhouetteCoefficient(data: Array<Array<number>>, pred: Array<any>): Array<number>
Parameters
data (Array<Array<number>>) Original data
pred (Array<any>) Predicted categories
Returns
Array<number>: Silhouette coefficient

Returns Dunn index.

dunnIndex(data: Array<Array<number>>, pred: Array<any>, intra_d: ("max" | "mean" | "centroid"), inter_d: "centroid"): number
Parameters
data (Array<Array<number>>) Original data
pred (Array<any>) Predicted categories
intra_d (("max" | "mean" | "centroid") = 'max') Intra-cluster distance type
inter_d ("centroid" = 'centroid') Inter-cluster distance type
Returns
number: Dunn index

Returns Purity.

purity(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
Returns
number: Purity

Returns Rand index.

randIndex(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
Returns
number: Rank index

Returns Dice index.

diceIndex(pred: Array<any>, t: Array<any>, beta: number): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
beta (number = 1) Positive real factor. Recall is considered beta times as important as precision.
Returns
number: Dice index

Returns Jaccard index.

jaccardIndex(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
Returns
number: Jaccard index

fowlkesMallowsIndex

lib/evaluate/clustering.js

Returns Fowlkes-Mallows index.

fowlkesMallowsIndex(pred: Array<any>, t: Array<any>): number
Parameters
pred (Array<any>) Predicted categories
t (Array<any>) True categories
Returns
number: Fowlkes-Mallows index

Returns Co-Ranking Matrix.

coRankingMatrix(x: Array<Array<number>>, z: Array<Array<number>>, ks: number, kt: number): number
Parameters
x (Array<Array<number>>) Reduced values
z (Array<Array<number>>) Original values
ks (number) Rank significance
kt (number) Failure tolerance
Returns
number: Co-Ranking Matrix value

Returns MSE (Mean Squared Error).

Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Mean Squared Error

Returns RMSE (Root Mean Squared Error).

rmse(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Root Mean Squared Error

Returns MAE (Mean Absolute Error).

Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Mean Absolute Error

Returns MAD (Median Absolute Deviation).

Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Median Absolute Deviation

Returns RMSPE (Root Mean Squared Percentage Error).

rmspe(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Root Mean Squared Percentage Error

Returns MAPE (Mean Absolute Percentage Error).

mape(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Mean Absolute Percentage Error

Returns MSLE (Mean Squared Logarithmic Error).

msle(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Mean Squared Logarithmic Error

Returns RMSLE (Root Mean Squared Logarithmic Error).

rmsle(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): RootMean Squared Logarithmic Error

Returns R2 (coefficient of determination).

Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Coefficient of determination

Returns correlation.

correlation(pred: (Array<number> | Array<Array<number>>), t: (Array<number> | Array<Array<number>>)): (number | Array<number>)
Parameters
pred ((Array<number> | Array<Array<number>>)) Predicted values
t ((Array<number> | Array<Array<number>>)) True values
Returns
(number | Array<number>): Correlation
\ No newline at end of file diff --git a/js/controller.js b/js/controller.js index 47320b8f..d033166b 100644 --- a/js/controller.js +++ b/js/controller.js @@ -1 +1 @@ -export default class Controller{constructor(e){this._e=e.setting.ml.configElement.node(),this._terminators=[],e.setting.terminate=this.terminate.bind(this),this.input.text=e=>this.input({type:"text",...e}),this.input.number=e=>this.input({type:"number",...e}),this.input.range=e=>this.input({type:"range",...e}),this.input.button=e=>("string"==typeof e&&(e={value:e}),this.input({type:"button",...e}))}terminate(){this._terminators.forEach((e=>e()))}text(e={}){"string"==typeof e&&(e={value:e});const t=this._e;e.label&&t.appendChild(document.createTextNode(e.label));const n=document.createElement("span");return t.appendChild(n),n.innerText=e.value??"",{element:n,get value(){return n.innerText},set value(e){n.innerText=e}}}select(e={}){Array.isArray(e)&&(e={values:e});const t=this._e,{label:n,values:i,value:l,...a}=e;n&&t.appendChild(document.createTextNode(n));const u=document.createElement("select");t.appendChild(u);for(const e of i){const t=document.createElement("option");t.value=t.innerText=e,u.appendChild(t)}l&&(u.value=l);for(const e of Object.keys(a))null!=a[e]&&u.setAttribute(e,a[e]);return{element:u,get value(){return u.value},set value(e){u.value=e},set values(e){u.replaceChild();for(const t of e){const e=document.createElement("option");e.value=t,e.innerText=t,u.appendChild(e)}},on(e,t){return u.addEventListener(e,t),this}}}input({label:e,type:t,...n}){const i=this._e;e&&i.appendChild(document.createTextNode(e));const l=document.createElement("input");i.appendChild(l),l.type=t;for(const e of Object.keys(n))null!=n[e]&&l.setAttribute(e,n[e]);return{element:l,get value(){return"number"===t||"range"===t?+l.value:"checkbox"===t?l.checked:l.value},set value(e){l.value=e},on(e,t){return l.addEventListener(e,t),this}}}array({label:e,type:t,...n}){const i=this._e;e&&i.appendChild(document.createTextNode(e));const l=document.createElement("span");i.appendChild(l);const a=n.values??[],u=[],s=()=>{l.replaceChildren();for(let e=0;e{a[e]=i.value},l.appendChild(i),u.push(i)}if(a.length>0){const e=document.createElement("input");e.type="button",e.value="-",e.onclick=()=>{a.pop(),s()},l.appendChild(e)}},r=document.createElement("input");return r.type="button",r.value="+",r.onclick=()=>{a.push(n.default),s()},i.appendChild(r),s(),{element:l,get value(){return"number"===t||"range"===t?a.map((e=>+e)):a},set value(e){a.length=0,a.push(...e),s()},on(e,t){return u.forEach((n=>n.addEventListener(e,t))),this}}}stepLoopButtons(){let e=0;const t=this._e;let n=!1,i=null,l=null,a=null,u=null,s=()=>e+1,r=!1,o=null;const d={initialize:null,stop:()=>n=!1,set enable(e){i&&(i.disabled=!e),l&&(l.disabled=!e),a&&(a.disabled=!e)},init(n){this.initialize=n;const i=document.createElement("input");return i.type="button",i.value="Initialize",i.onclick=()=>{n.length>0?(i.disabled=!0,this.enable=!1,n((()=>{i.disabled=!1,this.enable=!0,u&&(u.innerText=e=0)}))):(n(),this.enable=!0,u&&(u.innerText=e=0))},t.appendChild(i),r=!0,this},step(d){return i=document.createElement("input"),i.type="button",i.value="Step",i.disabled=r,i.onclick=()=>{d.length>0?(this.enable=!1,d((()=>{this.enable=!0,u&&(u.innerText=e=s())}))):(d(),u&&(u.innerText=e=s()))},t.appendChild(i),l=document.createElement("input"),l.type="button",l.value="Run",l.disabled=r,l.onclick=()=>{if(n=!n,l.value=n?"Stop":"Run",n){const t=()=>{n&&(d.length>0?d((()=>{u&&(u.innerText=e=s()),setTimeout(t,0)})):(d(),u&&(u.innerText=e=s()),setTimeout(t,0))),i.disabled=n,a&&(a.disabled=n),l.disabled=!1};t()}else l.disabled=!0},t.appendChild(l),o=d,this},skip(d){return d||=o,a=document.createElement("input"),a.type="button",a.value="Skip",a.disabled=r,a.onclick=()=>{if(n=!n,a.value=n?"Stop":"Skip",n){let t=(new Date).getTime();const r=()=>{for(i&&(i.disabled=n),l&&(l.disabled=n),a.disabled=!1;n;){if(d.length>0)return void d((()=>{u&&(u.innerText=e=s()),setTimeout(r,0)}));{d(),u&&(u.innerText=e=s());const n=(new Date).getTime();if(n-t>200)return t=n,void setTimeout(r,0)}}};r()}else a.disabled=!0},t.appendChild(a),this},epoch(e){return t.appendChild(document.createTextNode(" Epoch: ")),u=document.createElement("span"),t.appendChild(u),u.setAttribute("name","epoch"),u.innerText=0,e&&(s=e),this},elm(e){return e(t),this}};return this._terminators.push(d.stop),d}} \ No newline at end of file +export default class Controller{constructor(e,t){this._platform=e,this._e=t??e.setting.ml.configElement.node(),this._terminators=[],e.setting.terminate=this.terminate.bind(this),this.input=this.input.bind(this),this.input.text=e=>this.input({type:"text",...e}),this.input.number=e=>this.input({type:"number",...e}),this.input.range=e=>this.input({type:"range",...e}),this.input.button=e=>("string"==typeof e&&(e={value:e}),this.input({type:"button",...e}))}get element(){return this._e}terminate(){this._terminators.forEach((e=>e()))}span(){const e=document.createElement("span");return this._e.appendChild(e),new Controller(this._platform,e)}text(e={}){"string"==typeof e&&(e={value:e});const t=this._e;e.label&&t.appendChild(document.createTextNode(e.label));const n=document.createElement("span");return t.appendChild(n),n.innerText=e.value??"",{element:n,get value(){return n.innerText},set value(e){n.innerText=e}}}select(e={}){Array.isArray(e)&&(e={values:e});const t=this._e,{label:n,values:i,value:l,...a}=e;n&&t.appendChild(document.createTextNode(n));const s=document.createElement("select");t.appendChild(s);for(const e of i){const t=document.createElement("option");t.value=t.innerText=e,s.appendChild(t)}l&&(s.value=l);for(const e of Object.keys(a))null!=a[e]&&s.setAttribute(e,a[e]);return{element:s,get value(){return s.value},set value(e){s.value=e},set values(e){s.replaceChild();for(const t of e){const e=document.createElement("option");e.value=t,e.innerText=t,s.appendChild(e)}},on(e,t){return s.addEventListener(e,t),this}}}input({label:e,type:t,...n}){const i=this._e;e&&i.appendChild(document.createTextNode(e));const l=document.createElement("input");i.appendChild(l),l.type=t;for(const e of Object.keys(n))null!=n[e]&&l.setAttribute(e,n[e]);return{element:l,get value(){return"number"===t||"range"===t?+l.value:"checkbox"===t?l.checked:l.value},set value(e){l.value=e},on(e,t){return l.addEventListener(e,t),this}}}array({label:e,type:t,...n}){const i=this._e;e&&i.appendChild(document.createTextNode(e));const l=document.createElement("span");i.appendChild(l);const a=n.values??[],s=[],u=()=>{l.replaceChildren();for(let e=0;e{a[e]=i.value},l.appendChild(i),s.push(i)}if(a.length>0){const e=document.createElement("input");e.type="button",e.value="-",e.onclick=()=>{a.pop(),u()},l.appendChild(e)}},r=document.createElement("input");return r.type="button",r.value="+",r.onclick=()=>{a.push(n.default),u()},i.appendChild(r),u(),{element:l,get value(){return"number"===t||"range"===t?a.map((e=>+e)):a},set value(e){a.length=0,a.push(...e),u()},on(e,t){return s.forEach((n=>n.addEventListener(e,t))),this}}}stepLoopButtons(){let e=0;const t=this._e;let n=!1,i=null,l=null,a=null,s=null,u=()=>e+1,r=!1,o=null;const d={initialize:null,stop:()=>n=!1,set enable(e){i&&(i.disabled=!e),l&&(l.disabled=!e),a&&(a.disabled=!e)},init(n){this.initialize=n;const i=document.createElement("input");return i.type="button",i.value="Initialize",i.onclick=()=>{n.length>0?(i.disabled=!0,this.enable=!1,n((()=>{i.disabled=!1,this.enable=!0,s&&(s.innerText=e=0)}))):(n(),this.enable=!0,s&&(s.innerText=e=0))},t.appendChild(i),r=!0,this},step(d){return i=document.createElement("input"),i.type="button",i.value="Step",i.disabled=r,i.onclick=()=>{d.length>0?(this.enable=!1,d((()=>{this.enable=!0,s&&(s.innerText=e=u())}))):(d(),s&&(s.innerText=e=u()))},t.appendChild(i),l=document.createElement("input"),l.type="button",l.value="Run",l.disabled=r,l.onclick=()=>{if(n=!n,l.value=n?"Stop":"Run",n){const t=()=>{n&&(d.length>0?d((()=>{s&&(s.innerText=e=u()),setTimeout(t,0)})):(d(),s&&(s.innerText=e=u()),setTimeout(t,0))),i.disabled=n,a&&(a.disabled=n),l.disabled=!1};t()}else l.disabled=!0},t.appendChild(l),o=d,this},skip(d){return d||=o,a=document.createElement("input"),a.type="button",a.value="Skip",a.disabled=r,a.onclick=()=>{if(n=!n,a.value=n?"Stop":"Skip",n){let t=(new Date).getTime();const r=()=>{for(i&&(i.disabled=n),l&&(l.disabled=n),a.disabled=!1;n;){if(d.length>0)return void d((()=>{s&&(s.innerText=e=u()),setTimeout(r,0)}));{d(),s&&(s.innerText=e=u());const n=(new Date).getTime();if(n-t>200)return t=n,void setTimeout(r,0)}}};r()}else a.disabled=!0},t.appendChild(a),this},epoch(e){return t.appendChild(document.createTextNode(" Epoch: ")),s=document.createElement("span"),t.appendChild(s),s.setAttribute("name","epoch"),s.innerText=0,e&&(u=e),this},elm(e){return e(t),this}};return this._terminators.push(d.stop),d}} \ No newline at end of file diff --git a/js/data/manual.js b/js/data/manual.js index 62f77e90..c6073003 100644 --- a/js/data/manual.js +++ b/js/data/manual.js @@ -1 +1 @@ -import{BaseData}from"./base.js";import Matrix from"../../lib/util/matrix.js";import{specialCategory,getCategoryColor,DataPoint}from"../utils.js";const normal_random=function(t=0,e=1){const s=Math.sqrt(e),n=Math.random(),i=Math.random();return[Math.sqrt(-2*Math.log(n))*Math.cos(2*Math.PI*i)*s+t,Math.sqrt(-2*Math.log(n))*Math.sin(2*Math.PI*i)*s+t]},dataCreateTools={point:t=>{let e=null;return{init:(t,s)=>{e=new DataPoint(s,[0,0],specialCategory.dummy)},move:t=>{e.at=t},click:(e,s)=>{t.push(e,s.category)},terminate:()=>{e?.remove()},menu:[{title:"category",type:"category",min:0,max:100,value:1,key:"category"}]}},circle:t=>{let e=null;return{init:(t,s)=>{e=document.createElementNS("http://www.w3.org/2000/svg","circle"),e.setAttribute("r",0),e.setAttribute("fill","red"),e.setAttribute("fill-opacity",.2),e.setAttribute("stroke","red"),s.appendChild(e)},move:(t,s)=>{e.setAttribute("cx",t[0]),e.setAttribute("cy",t[1]),e.setAttribute("r",s.radius)},click:(e,s)=>{for(let n=0;n1;)n[0]=2*Math.random()-1,n[1]=2*Math.random()-1;t.push([e[0]+n[0]*s.radius,e[1]+n[1]*s.radius],s.category)}},terminate:()=>{e?.remove()},menu:[{title:"radius",type:"number",min:1,max:200,value:50,key:"radius"},{title:"category",type:"category",min:0,max:100,value:1,key:"category"},{title:"count",type:"number",min:1,max:100,value:10,key:"count"}]}},square:t=>{let e=null;return{init:(t,s)=>{e=document.createElementNS("http://www.w3.org/2000/svg","rect"),e.setAttribute("fill","red"),e.setAttribute("fill-opacity",.2),e.setAttribute("stroke","red"),s.appendChild(e)},move:(t,s)=>{e.setAttribute("x",t[0]-s.size),e.setAttribute("y",t[1]-s.size),e.setAttribute("width",2*s.size),e.setAttribute("height",2*s.size)},click:(e,s)=>{for(let n=0;n{e?.remove()},menu:[{title:"size",type:"number",min:1,max:200,value:50,key:"size"},{title:"category",type:"category",min:0,max:100,value:1,key:"category"},{title:"count",type:"number",min:1,max:100,value:10,key:"count"}]}},gaussian:t=>{let e=null;const s=t=>{const e=[t.varx,t.cov,t.cov,t.vary],s=(e[0]+e[3]+Math.sqrt((e[0]-e[3])**2+4*e[1]**2))/2,n=(e[0]+e[3]-Math.sqrt((e[0]-e[3])**2+4*e[1]**2))/2;let i=360*Math.atan((s-e[0])/e[1])/(2*Math.PI);isNaN(i)&&(i=0),t.rot=i,t.rx=2.146*Math.sqrt(s),t.ry=2.146*Math.sqrt(n)},n=t=>{const e=(t.rx/2.146)**2,s=(t.ry/2.146)**2,n=Math.tan(2*t.rot*Math.PI/360),i=n**2,r=1+1/i,a=e+s+2*e/i,o=Math.sqrt(a**2-4*r*(e**2/i+e*s));if(isNaN(o))return t.varx=e,t.vary=s,void(t.cov=0);const l=(a-o)/(2*r),c=e+s-l,m=(e-l)/n;t.varx=l,t.vary=c,t.cov=m};return{init:(t,s)=>{e=document.createElementNS("http://www.w3.org/2000/svg","ellipse"),e.setAttribute("rx",0),e.setAttribute("ry",0),e.setAttribute("fill","red"),e.setAttribute("fill-opacity",.2),e.setAttribute("stroke","red"),s.appendChild(e)},move:(t,s)=>{const n=t,i=[s.varx,s.cov,s.cov,s.vary],r=(i[0]+i[3]+Math.sqrt((i[0]-i[3])**2+4*i[1]**2))/2,a=(i[0]+i[3]-Math.sqrt((i[0]-i[3])**2+4*i[1]**2))/2;let o=360*Math.atan((r-i[0])/i[1])/(2*Math.PI);isNaN(o)&&(o=0),e.setAttribute("rx",2.146*Math.sqrt(r)),e.setAttribute("ry",2.146*Math.sqrt(a)),e.setAttribute("transform","translate("+n[0]+","+n[1]+") rotate("+o+")")},click:(e,s)=>{const n=[[s.varx,s.cov],[s.cov,s.vary]],i=Matrix.randn(s.count,2,e,n).toArray();for(let e=0;e{e?.remove()},menu:[{title:"var x",type:"number",min:1,max:1e4,value:1600,key:"varx",onchange:s},{title:"var y",type:"number",min:1,max:1e4,value:800,key:"vary",onchange:s},{title:"cov",type:"number",min:-1e3,max:1e3,value:800,key:"cov",onchange:s},{title:"rx",type:"number",min:0,max:1e3,value:98.21150163574005,key:"rx",onchange:n},{title:"ry",type:"number",min:0,max:1e3,value:37.5134555386868,key:"ry",onchange:n},{title:"rot",type:"number",min:-180,max:180,value:31.717474411461016,key:"rot",onchange:n},{title:"category",type:"category",min:0,max:100,value:1,key:"category"},{title:"count",type:"number",min:1,max:100,value:10,key:"count"}]}},eraser:t=>{const e=t._manager.platform._renderer[0].points;let s=[],n=null;return{init:(t,i)=>{if(n=i,s.forEach((t=>t.remove())),s.length=0,"all"===t.mode)for(const t of e){const e=document.createElementNS("http://www.w3.org/2000/svg","circle");e.setAttribute("r",t.radius),e.setAttribute("fill","red"),e.setAttribute("cx",t.at[0]),e.setAttribute("cy",t.at[1]),n.appendChild(e),s.push(e)}else if("nearest"===t.mode){const t=document.createElementNS("http://www.w3.org/2000/svg","circle");t.setAttribute("r",e[0].radius),t.setAttribute("fill","red"),n.appendChild(t),s.push(t)}else if("circle"===t.mode){const t=document.createElementNS("http://www.w3.org/2000/svg","circle");t.setAttribute("r",50),t.setAttribute("fill","red"),t.setAttribute("fill-opacity",.2),n.appendChild(t),s.push(t)}},move:(t,i)=>{if("nearest"===i.mode){let n=1/0,i=null;for(const s of e){const e=t.reduce(((t,e,n)=>t+(e-s.at[n])**2),0);et+(e-i.at[s])**2),0);if(Math.sqrt(e)<50){const t=document.createElementNS("http://www.w3.org/2000/svg","circle");t.setAttribute("r",i.radius),t.setAttribute("fill","red"),t.setAttribute("cx",i.at[0]),t.setAttribute("cy",i.at[1]),n.appendChild(t),s.push(t)}}}},click:(n,i)=>{if("all"===i.mode)t.remove(),s.forEach((t=>t.remove())),s.length=0;else if("nearest"===i.mode){let i=1/0,r=1/0,a=null,o=null;for(let s=0;st+(n-e[s].at[i])**2),0);t=0;s--){const i=n.reduce(((t,n,i)=>t+(n-e[s].at[i])**2),0);Math.sqrt(i)<50&&t.splice(s,1)}for(let t=1;t{s.forEach((t=>t.remove())),s.length=0},menu:[{title:"mode",type:"select",options:[{value:"nearest",text:"nearest"},{value:"circle",text:"circle"},{value:"all",text:"all"}],key:"mode"}]}}},dataPresets={clusters:{init:t=>{const e=document.createElement("input");e.type="number",e.name="n",e.min=1,e.max=10,e.value=3,t.append(" n ",e)},make:(t,e)=>{const s=+e.querySelector("[name=n]").value,n=t._size[0],i=t._size[1];let r=1;const a=[],o=[];for(let t=0;tMath.sqrt(t.reduce(((t,e,n)=>t+(e-s[n])**2),0)){const e=200;let s=1;const n=[];for(let i=0;i<2;i++,s++)for(let i=0;i<100;i++){const i=Math.random()*Math.PI,r=[Math.cos(i)*e,Math.sin(i)*e];{const t=normal_random(0,20);r[0]+=t[0],r[1]+=t[1]}2===s&&(r[0]=e-r[0],r[1]=e-r[1]-100),r[0]+=t._size[0]/2-100,r[1]+=t._size[1]/2-50,n.push(r,s)}t.push(...n)}},circle:{init:t=>{const e=document.createElement("input");e.type="number",e.name="n",e.min=1,e.max=10,e.value=3,t.append(" n ",e)},make:(t,e)=>{const s=+e.querySelector("[name=n]").value,n=Math.min(t._size[0],t._size[1])/(2*s),i=[];for(let e=0;e{const e=Math.min(t._size[0],t._size[1])/3,s=[t._size[0]/2,t._size[1]/2],n=[];for(let t=0;t<100;t++)n.push([s[0]+Math.random()*e,s[1]+Math.random()*e],1),n.push([s[0]-Math.random()*e,s[1]-Math.random()*e],1);for(let t=0;t<100;t++)n.push([s[0]+Math.random()*e,s[1]-Math.random()*e],2),n.push([s[0]-Math.random()*e,s[1]+Math.random()*e],2);t.push(...n)}}};class ContextMenu{constructor(){this._r=document.createElement("div"),this._r.classList.add("context-menu"),document.querySelector("body").appendChild(this._r),this._r.onclick=t=>t.stopPropagation(),this._showMenu=t=>{this.show([t.pageX,t.pageY]);const e=()=>{this.hide(),document.body.removeEventListener("click",e)};document.body.addEventListener("click",e)},this._orgoncontextmenu=document.body.oncontextmenu}terminate(){this.create(),this._r.remove()}create(t){if(this._r.replaceChildren(),!t||0===t.length)return document.body.removeEventListener("contextmenu",this._showMenu),void(document.body.oncontextmenu=this._orgoncontextmenu);document.body.addEventListener("contextmenu",this._showMenu),document.body.oncontextmenu=()=>!1;const e=document.createElement("ul");this._r.appendChild(e),this._properties={};for(let s=0;s{const e=getCategoryColor(t);n.style.backgroundColor=e;const s=.299*e.r+.587*e.g+.114*e.b<128?"white":"black";n.style.color=s},i=document.createElement("input");i.type="number",i.min=t[s].min,i.max=t[s].max,i.value=t[s].value,i.onchange=()=>{t[s].onchange?.(this._properties),"category"===t[s].type&&e(+i.value)},n.appendChild(i),"category"===t[s].type&&e(t[s].value),Object.defineProperty(this._properties,t[s].key,{get:()=>+i.value,set:t=>{i.value=t}});break}case"select":{const e=document.createElement("select");e.onchange=()=>t[s].onchange?.(this._properties);for(const n of t[s].options){const t=document.createElement("option");t.value=n.value,t.innerText=n.text,e.appendChild(t)}n.appendChild(e),Object.defineProperty(this._properties,t[s].key,{get:()=>e.value,set:t=>{e.value=t}});break}}}}show(t){this._r.classList.add("show"),this._r.style.left=t[0]+"px",this._r.style.top=t[1]+"px"}hide(){this._r.classList.remove("show")}values(){return this._properties}}export default class ManualData extends BaseData{constructor(t){super(t),this._org_padding=this._manager.platform._renderer[0].padding,this._manager.platform._renderer[0].padding=0,this._size=[960,500],this._dim=2,this._scale=.001,this._tool=null,this._contextmenu=new ContextMenu;const e=this.setting.data.configElement,s=document.createElement("div");e.appendChild(s),s.append("Dimension");const n=document.createElement("input");n.type="number",n.name="dimension",n.min=1,n.max=2,n.value=this._dim,n.onchange=()=>{this._dim=+n.value,this.setting.ml.refresh(),this.setting.vue.$forceUpdate(),this._manager.platform.render(),this.setting.vue.pushHistory()},s.appendChild(n),s.append(" Scale");const i=document.createElement("input");i.type="number",i.name="scale",i.min=0,i.max=1e4,i.step=.001,i.value=this._scale,i.onchange=()=>{this._scale=i.value,this._manager.platform.render()},s.appendChild(i);const r=document.createElement("div");e.appendChild(r),r.append("Preset");const a=document.createElement("select");a.onchange=()=>{const t=a.value;this.remove(),o.replaceChildren(),dataPresets[t].init?.(o),dataPresets[t].make(this,o)};for(const t of Object.keys(dataPresets)){const e=document.createElement("option");e.value=e.innerText=t,a.appendChild(e)}r.appendChild(a);const o=document.createElement("span");r.appendChild(o);const l=document.createElement("input");l.type="button",l.value="Reset",l.onclick=()=>{const t=a.value;this.remove(),dataPresets[t].make(this,o)},r.appendChild(l);const c=document.createElement("input");c.type="button",c.value="Clear",c.onclick=()=>{this.remove()},r.appendChild(c);const m=document.createElement("div");e.appendChild(m),m.append("Tools");const h=document.createElement("div");h.classList.add("manual-data-tools"),m.appendChild(h);for(const t in dataCreateTools){const e=document.createElement("div");e.title=t,e.classList.add("icon",t),e.onclick=()=>{this._tool?.terminate(),e.classList.contains("selected")?(e.classList.remove("selected"),this._tool=null,this._contextmenu.create()):(h.querySelectorAll("div").forEach((t=>t.classList.remove("selected"))),this._tool=dataCreateTools[t](this),e.classList.add("selected"),this._contextmenu.create(this._tool.menu),this._tool.init(this._contextmenu.values(),this.dummyArea))},h.appendChild(e),this._tool||(this._tool=dataCreateTools[t](this),e.classList.add("selected"),this._contextmenu.create(this._tool.menu),this._tool.init(this._contextmenu.values(),this.dummyArea))}this.addCluster([this._size[0]/4,this._size[1]/3],0,2500,100,1),this.addCluster([this._size[0]/2,2*this._size[1]/3],0,2500,100,2),this.addCluster([3*this._size[0]/4,this._size[1]/3],0,2500,100,3),dataPresets[a.value].init?.(o),this._entersvg=()=>this.initSVG(),document.addEventListener("mousemove",this._entersvg)}get availTask(){return 1===this._dim?["RG","IN","AD","DE","TF","SM","TP","CP"]:["CT","CF","SC","RG","IN","AD","DR","FS","DE","GR","SM","TP","CP"]}get domain(){return 1===this._dim?[[0,this._size[0]*this._scale]]:[[0,this._size[0]*this._scale],[0,this._size[1]*this._scale]]}get range(){return 1===this._dim?[0,this._size[1]*this._scale]:super.range}get dimension(){return this._dim}get originalX(){return 1===this._dim?this._x.map((t=>[t[0]])):this._x}get x(){return this.originalX.map((t=>t.map((t=>t*this._scale))))}get originalY(){return 1===this._dim?this._x.map((t=>t[1])):this._y}get y(){return 1===this._dim?this._x.map((t=>t[1]*this._scale)):this._y}get params(){return{dimension:this._dim}}set params(t){if(t.dimension){this.setting.data.configElement.querySelector("[name=dimension]").value=t.dimension,this._dim=+t.dimension,this.setting.vue.$forceUpdate(),this._manager.platform.render()}}get dummyArea(){this.initSVG();const t=this._r.querySelector("g.manual-dummy-area");if(!t){const t=document.createElementNS("http://www.w3.org/2000/svg","g");return t.classList.add("manual-dummy-area"),this._r.insertBefore(t,this._r.firstChild),t}return t}initSVG(){let t=this._manager.platform?.svg;if(!t)return;if(!t.querySelector("g.manual-root-area")){this._r=document.createElementNS("http://www.w3.org/2000/svg","g"),this._r.classList.add("manual-root-area"),t.appendChild(this._r);const e=document.createElementNS("http://www.w3.org/2000/svg","rect");this._r.appendChild(e),e.setAttribute("x",0),e.setAttribute("y",0),e.setAttribute("width",this._size[0]),e.setAttribute("height",this._size[1]),e.setAttribute("opacity",0),e.onmouseover=()=>{this._tool?.terminate(),this._tool?.init(this._contextmenu.values(),this.dummyArea)},e.onmousemove=t=>{const e=d3.pointer(t);this._tool?.move(e,this._contextmenu.values())},e.onmouseleave=()=>{this._tool?.terminate()},e.onclick=t=>{const e=d3.pointer(t);this._tool?.click(e,this._contextmenu.values())}}}splice(t,e,...s){const n=[],i=[];for(let t=0;t[t,o[e]]))}set(t,e,s){this.splice(t,1,e,s)}push(...t){this.splice(this.length,0,...t)}pop(){return this.splice(this.length-1,1)[0]}unshift(...t){this.splice(0,0,...t)}shift(){return this.splice(0,1)[0]}remove(){this.splice(0,this.length)}terminate(){super.terminate(),this._tool?.terminate(),this._contextmenu.terminate(),this._r?.remove(),this._manager.platform._renderer[0].padding=this._org_padding,document.removeEventListener("mousemove",this._entersvg)}addCluster(t,e,s,n,i){const r=[];for(let a=0;a0)do{n=[2*Math.random()-1,2*Math.random()-1]}while(n[0]**2+n[1]**2<=1);if(n[0]=n[0]*e+t[0],n[1]=n[1]*e+t[1],s>0){const t=normal_random(0,s);n[0]+=t[0],n[1]+=t[1]}r.push(n,+i)}this.push(...r)}} \ No newline at end of file +import{BaseData}from"./base.js";import Matrix from"../../lib/util/matrix.js";import{specialCategory,getCategoryColor}from"../utils.js";import{DataPoint}from"../renderer/util/figure.js";const normal_random=function(t=0,e=1){const s=Math.sqrt(e),n=Math.random(),i=Math.random();return[Math.sqrt(-2*Math.log(n))*Math.cos(2*Math.PI*i)*s+t,Math.sqrt(-2*Math.log(n))*Math.sin(2*Math.PI*i)*s+t]},dataCreateTools={point:t=>{let e=null;return{init:(t,s)=>{e=new DataPoint(s,[0,0],specialCategory.dummy)},move:t=>{e.at=t},click:(e,s)=>{t.push(e,s.category)},terminate:()=>{e?.remove()},menu:[{title:"category",type:"category",min:0,max:100,value:1,key:"category"}]}},circle:t=>{let e=null;return{init:(t,s)=>{e=document.createElementNS("http://www.w3.org/2000/svg","circle"),e.setAttribute("r",0),e.setAttribute("fill","red"),e.setAttribute("fill-opacity",.2),e.setAttribute("stroke","red"),s.appendChild(e)},move:(t,s)=>{e.setAttribute("cx",t[0]),e.setAttribute("cy",t[1]),e.setAttribute("r",s.radius)},click:(e,s)=>{for(let n=0;n1;)n[0]=2*Math.random()-1,n[1]=2*Math.random()-1;t.push([e[0]+n[0]*s.radius,e[1]+n[1]*s.radius],s.category)}},terminate:()=>{e?.remove()},menu:[{title:"radius",type:"number",min:1,max:200,value:50,key:"radius"},{title:"category",type:"category",min:0,max:100,value:1,key:"category"},{title:"count",type:"number",min:1,max:100,value:10,key:"count"}]}},square:t=>{let e=null;return{init:(t,s)=>{e=document.createElementNS("http://www.w3.org/2000/svg","rect"),e.setAttribute("fill","red"),e.setAttribute("fill-opacity",.2),e.setAttribute("stroke","red"),s.appendChild(e)},move:(t,s)=>{e.setAttribute("x",t[0]-s.size),e.setAttribute("y",t[1]-s.size),e.setAttribute("width",2*s.size),e.setAttribute("height",2*s.size)},click:(e,s)=>{for(let n=0;n{e?.remove()},menu:[{title:"size",type:"number",min:1,max:200,value:50,key:"size"},{title:"category",type:"category",min:0,max:100,value:1,key:"category"},{title:"count",type:"number",min:1,max:100,value:10,key:"count"}]}},gaussian:t=>{let e=null;const s=t=>{const e=[t.varx,t.cov,t.cov,t.vary],s=(e[0]+e[3]+Math.sqrt((e[0]-e[3])**2+4*e[1]**2))/2,n=(e[0]+e[3]-Math.sqrt((e[0]-e[3])**2+4*e[1]**2))/2;let i=360*Math.atan((s-e[0])/e[1])/(2*Math.PI);isNaN(i)&&(i=0),t.rot=i,t.rx=2.146*Math.sqrt(s),t.ry=2.146*Math.sqrt(n)},n=t=>{const e=(t.rx/2.146)**2,s=(t.ry/2.146)**2,n=Math.tan(2*t.rot*Math.PI/360),i=n**2,r=1+1/i,a=e+s+2*e/i,o=Math.sqrt(a**2-4*r*(e**2/i+e*s));if(isNaN(o))return t.varx=e,t.vary=s,void(t.cov=0);const l=(a-o)/(2*r),c=e+s-l,m=(e-l)/n;t.varx=l,t.vary=c,t.cov=m};return{init:(t,s)=>{e=document.createElementNS("http://www.w3.org/2000/svg","ellipse"),e.setAttribute("rx",0),e.setAttribute("ry",0),e.setAttribute("fill","red"),e.setAttribute("fill-opacity",.2),e.setAttribute("stroke","red"),s.appendChild(e)},move:(t,s)=>{const n=t,i=[s.varx,s.cov,s.cov,s.vary],r=(i[0]+i[3]+Math.sqrt((i[0]-i[3])**2+4*i[1]**2))/2,a=(i[0]+i[3]-Math.sqrt((i[0]-i[3])**2+4*i[1]**2))/2;let o=360*Math.atan((r-i[0])/i[1])/(2*Math.PI);isNaN(o)&&(o=0),e.setAttribute("rx",2.146*Math.sqrt(r)),e.setAttribute("ry",2.146*Math.sqrt(a)),e.setAttribute("transform","translate("+n[0]+","+n[1]+") rotate("+o+")")},click:(e,s)=>{const n=[[s.varx,s.cov],[s.cov,s.vary]],i=Matrix.randn(s.count,2,e,n).toArray();for(let e=0;e{e?.remove()},menu:[{title:"var x",type:"number",min:1,max:1e4,value:1600,key:"varx",onchange:s},{title:"var y",type:"number",min:1,max:1e4,value:800,key:"vary",onchange:s},{title:"cov",type:"number",min:-1e3,max:1e3,value:800,key:"cov",onchange:s},{title:"rx",type:"number",min:0,max:1e3,value:98.21150163574005,key:"rx",onchange:n},{title:"ry",type:"number",min:0,max:1e3,value:37.5134555386868,key:"ry",onchange:n},{title:"rot",type:"number",min:-180,max:180,value:31.717474411461016,key:"rot",onchange:n},{title:"category",type:"category",min:0,max:100,value:1,key:"category"},{title:"count",type:"number",min:1,max:100,value:10,key:"count"}]}},eraser:t=>{const e=t._manager.platform._renderer[0].points;let s=[],n=null;return{init:(t,i)=>{if(n=i,s.forEach((t=>t.remove())),s.length=0,"all"===t.mode)for(const t of e){const e=document.createElementNS("http://www.w3.org/2000/svg","circle");e.setAttribute("r",t.radius),e.setAttribute("fill","red"),e.setAttribute("cx",t.at[0]),e.setAttribute("cy",t.at[1]),n.appendChild(e),s.push(e)}else if("nearest"===t.mode){const t=document.createElementNS("http://www.w3.org/2000/svg","circle");t.setAttribute("r",e[0].radius),t.setAttribute("fill","red"),n.appendChild(t),s.push(t)}else if("circle"===t.mode){const t=document.createElementNS("http://www.w3.org/2000/svg","circle");t.setAttribute("r",50),t.setAttribute("fill","red"),t.setAttribute("fill-opacity",.2),n.appendChild(t),s.push(t)}},move:(t,i)=>{if("nearest"===i.mode){let n=1/0,i=null;for(const s of e){const e=t.reduce(((t,e,n)=>t+(e-s.at[n])**2),0);et+(e-i.at[s])**2),0);if(Math.sqrt(e)<50){const t=document.createElementNS("http://www.w3.org/2000/svg","circle");t.setAttribute("r",i.radius),t.setAttribute("fill","red"),t.setAttribute("cx",i.at[0]),t.setAttribute("cy",i.at[1]),n.appendChild(t),s.push(t)}}}},click:(n,i)=>{if("all"===i.mode)t.remove(),s.forEach((t=>t.remove())),s.length=0;else if("nearest"===i.mode){let i=1/0,r=1/0,a=null,o=null;for(let s=0;st+(n-e[s].at[i])**2),0);t=0;s--){const i=n.reduce(((t,n,i)=>t+(n-e[s].at[i])**2),0);Math.sqrt(i)<50&&t.splice(s,1)}for(let t=1;t{s.forEach((t=>t.remove())),s.length=0},menu:[{title:"mode",type:"select",options:[{value:"nearest",text:"nearest"},{value:"circle",text:"circle"},{value:"all",text:"all"}],key:"mode"}]}}},dataPresets={clusters:{init:t=>{const e=document.createElement("input");e.type="number",e.name="n",e.min=1,e.max=10,e.value=3,t.append(" n ",e)},make:(t,e)=>{const s=+e.querySelector("[name=n]").value,n=t._size[0],i=t._size[1];let r=1;const a=[],o=[];for(let t=0;tMath.sqrt(t.reduce(((t,e,n)=>t+(e-s[n])**2),0)){const e=200;let s=1;const n=[];for(let i=0;i<2;i++,s++)for(let i=0;i<100;i++){const i=Math.random()*Math.PI,r=[Math.cos(i)*e,Math.sin(i)*e];{const t=normal_random(0,20);r[0]+=t[0],r[1]+=t[1]}2===s&&(r[0]=e-r[0],r[1]=e-r[1]-100),r[0]+=t._size[0]/2-100,r[1]+=t._size[1]/2-50,n.push(r,s)}t.push(...n)}},circle:{init:t=>{const e=document.createElement("input");e.type="number",e.name="n",e.min=1,e.max=10,e.value=3,t.append(" n ",e)},make:(t,e)=>{const s=+e.querySelector("[name=n]").value,n=Math.min(t._size[0],t._size[1])/(2*s),i=[];for(let e=0;e{const e=Math.min(t._size[0],t._size[1])/3,s=[t._size[0]/2,t._size[1]/2],n=[];for(let t=0;t<100;t++)n.push([s[0]+Math.random()*e,s[1]+Math.random()*e],1),n.push([s[0]-Math.random()*e,s[1]-Math.random()*e],1);for(let t=0;t<100;t++)n.push([s[0]+Math.random()*e,s[1]-Math.random()*e],2),n.push([s[0]-Math.random()*e,s[1]+Math.random()*e],2);t.push(...n)}}};class ContextMenu{constructor(){this._r=document.createElement("div"),this._r.classList.add("context-menu"),document.querySelector("body").appendChild(this._r),this._r.onclick=t=>t.stopPropagation(),this._showMenu=t=>{this.show([t.pageX,t.pageY]);const e=()=>{this.hide(),document.body.removeEventListener("click",e)};document.body.addEventListener("click",e)},this._orgoncontextmenu=document.body.oncontextmenu}terminate(){this.create(),this._r.remove()}create(t){if(this._r.replaceChildren(),!t||0===t.length)return document.body.removeEventListener("contextmenu",this._showMenu),void(document.body.oncontextmenu=this._orgoncontextmenu);document.body.addEventListener("contextmenu",this._showMenu),document.body.oncontextmenu=()=>!1;const e=document.createElement("ul");this._r.appendChild(e),this._properties={};for(let s=0;s{const e=getCategoryColor(t);n.style.backgroundColor=e;const s=.299*e.r+.587*e.g+.114*e.b<128?"white":"black";n.style.color=s},i=document.createElement("input");i.type="number",i.min=t[s].min,i.max=t[s].max,i.value=t[s].value,i.onchange=()=>{t[s].onchange?.(this._properties),"category"===t[s].type&&e(+i.value)},n.appendChild(i),"category"===t[s].type&&e(t[s].value),Object.defineProperty(this._properties,t[s].key,{get:()=>+i.value,set:t=>{i.value=t}});break}case"select":{const e=document.createElement("select");e.onchange=()=>t[s].onchange?.(this._properties);for(const n of t[s].options){const t=document.createElement("option");t.value=n.value,t.innerText=n.text,e.appendChild(t)}n.appendChild(e),Object.defineProperty(this._properties,t[s].key,{get:()=>e.value,set:t=>{e.value=t}});break}}}}show(t){this._r.classList.add("show"),this._r.style.left=t[0]+"px",this._r.style.top=t[1]+"px"}hide(){this._r.classList.remove("show")}values(){return this._properties}}export default class ManualData extends BaseData{constructor(t){super(t),this._org_padding=this._manager.platform._renderer[0].padding,this._manager.platform._renderer[0].padding=0,this._size=[960,500],this._dim=2,this._scale=.001,this._tool=null,this._contextmenu=new ContextMenu;const e=this.setting.data.configElement,s=document.createElement("div");e.appendChild(s),s.append("Dimension");const n=document.createElement("input");n.type="number",n.name="dimension",n.min=1,n.max=2,n.value=this._dim,n.onchange=()=>{this._dim=+n.value,this.setting.ml.refresh(),this.setting.vue.$forceUpdate(),this._manager.platform.render(),this.setting.vue.pushHistory()},s.appendChild(n),s.append(" Scale");const i=document.createElement("input");i.type="number",i.name="scale",i.min=0,i.max=1e4,i.step=.001,i.value=this._scale,i.onchange=()=>{this._scale=i.value,this._manager.platform.render()},s.appendChild(i);const r=document.createElement("div");e.appendChild(r),r.append("Preset");const a=document.createElement("select");a.onchange=()=>{const t=a.value;this.remove(),o.replaceChildren(),dataPresets[t].init?.(o),dataPresets[t].make(this,o)};for(const t of Object.keys(dataPresets)){const e=document.createElement("option");e.value=e.innerText=t,a.appendChild(e)}r.appendChild(a);const o=document.createElement("span");r.appendChild(o);const l=document.createElement("input");l.type="button",l.value="Reset",l.onclick=()=>{const t=a.value;this.remove(),dataPresets[t].make(this,o)},r.appendChild(l);const c=document.createElement("input");c.type="button",c.value="Clear",c.onclick=()=>{this.remove()},r.appendChild(c);const m=document.createElement("div");e.appendChild(m),m.append("Tools");const h=document.createElement("div");h.classList.add("manual-data-tools"),m.appendChild(h);for(const t in dataCreateTools){const e=document.createElement("div");e.title=t,e.classList.add("icon",t),e.onclick=()=>{this._tool?.terminate(),e.classList.contains("selected")?(e.classList.remove("selected"),this._tool=null,this._contextmenu.create()):(h.querySelectorAll("div").forEach((t=>t.classList.remove("selected"))),this._tool=dataCreateTools[t](this),e.classList.add("selected"),this._contextmenu.create(this._tool.menu),this._tool.init(this._contextmenu.values(),this.dummyArea))},h.appendChild(e),this._tool||(this._tool=dataCreateTools[t](this),e.classList.add("selected"),this._contextmenu.create(this._tool.menu),this._tool.init(this._contextmenu.values(),this.dummyArea))}this.addCluster([this._size[0]/4,this._size[1]/3],0,2500,100,1),this.addCluster([this._size[0]/2,2*this._size[1]/3],0,2500,100,2),this.addCluster([3*this._size[0]/4,this._size[1]/3],0,2500,100,3),dataPresets[a.value].init?.(o),this._entersvg=()=>this.initSVG(),document.addEventListener("mousemove",this._entersvg)}get availTask(){return 1===this._dim?["RG","IN","AD","DE","TF","SM","TP","CP"]:["CT","CF","SC","RG","IN","AD","DR","FS","DE","GR","SM","TP","CP"]}get domain(){return 1===this._dim?[[0,this._size[0]*this._scale]]:[[0,this._size[0]*this._scale],[0,this._size[1]*this._scale]]}get range(){return 1===this._dim?[0,this._size[1]*this._scale]:super.range}get dimension(){return this._dim}get originalX(){return 1===this._dim?this._x.map((t=>[t[0]])):this._x}get x(){return this.originalX.map((t=>t.map((t=>t*this._scale))))}get originalY(){return 1===this._dim?this._x.map((t=>t[1])):this._y}get y(){return 1===this._dim?this._x.map((t=>t[1]*this._scale)):this._y}get params(){return{dimension:this._dim}}set params(t){if(t.dimension){this.setting.data.configElement.querySelector("[name=dimension]").value=t.dimension,this._dim=+t.dimension,this.setting.vue.$forceUpdate(),this._manager.platform.render()}}get dummyArea(){this.initSVG();const t=this._r.querySelector("g.manual-dummy-area");if(!t){const t=document.createElementNS("http://www.w3.org/2000/svg","g");return t.classList.add("manual-dummy-area"),this._r.insertBefore(t,this._r.firstChild),t}return t}initSVG(){let t=this._manager.platform?.svg;if(!t)return;if(!t.querySelector("g.manual-root-area")){this._r=document.createElementNS("http://www.w3.org/2000/svg","g"),this._r.classList.add("manual-root-area"),t.appendChild(this._r);const e=document.createElementNS("http://www.w3.org/2000/svg","rect");this._r.appendChild(e),e.setAttribute("x",0),e.setAttribute("y",0),e.setAttribute("width",this._size[0]),e.setAttribute("height",this._size[1]),e.setAttribute("opacity",0),e.onmouseover=()=>{this._tool?.terminate(),this._tool?.init(this._contextmenu.values(),this.dummyArea)},e.onmousemove=t=>{const e=d3.pointer(t);this._tool?.move(e,this._contextmenu.values())},e.onmouseleave=()=>{this._tool?.terminate()},e.onclick=t=>{const e=d3.pointer(t);this._tool?.click(e,this._contextmenu.values())}}}splice(t,e,...s){const n=[],i=[];for(let t=0;t[t,o[e]]))}set(t,e,s){this.splice(t,1,e,s)}push(...t){this.splice(this.length,0,...t)}pop(){return this.splice(this.length-1,1)[0]}unshift(...t){this.splice(0,0,...t)}shift(){return this.splice(0,1)[0]}remove(){this.splice(0,this.length)}terminate(){super.terminate(),this._tool?.terminate(),this._contextmenu.terminate(),this._r?.remove(),this._manager.platform._renderer[0].padding=this._org_padding,document.removeEventListener("mousemove",this._entersvg)}addCluster(t,e,s,n,i){const r=[];for(let a=0;a0)do{n=[2*Math.random()-1,2*Math.random()-1]}while(n[0]**2+n[1]**2<=1);if(n[0]=n[0]*e+t[0],n[1]=n[1]*e+t[1],s>0){const t=normal_random(0,s);n[0]+=t[0],n[1]+=t[1]}r.push(n,+i)}this.push(...r)}} \ No newline at end of file diff --git a/js/renderer/line.js b/js/renderer/line.js index 7a7c4b84..075984c7 100644 --- a/js/renderer/line.js +++ b/js/renderer/line.js @@ -1 +1 @@ -import BaseRenderer from"./base.js";import{DataPoint,specialCategory,getCategoryColor}from"../utils.js";const scale=function(t,e,s,i,h){return isFinite(e)&&isFinite(s)&&e!==s?(t-e)/(s-e)*(h-i)+i:(h+i)/2},line=t=>{let e="";for(let s=0;s{this._observe_target&&this._p.forEach(((t,e)=>t.title=this.datas.labels[e]))})),this._observer.observe(this._svg,{childList:!0}),this._will_render=!1}get svg(){return this._svg}get width(){return this._size[0]}get height(){return this._size[1]}get padding(){return Array.isArray(this._pad)?this._pad:[this._pad,this._pad]}set padding(t){this._pad=t,this.render()}set clipPadding(t){this._clip_pad=t,this.render()}get points(){return this._p}init(){this._pred_values=[],this._lastpred=[],this._r_tile?.remove(),this._grid.replaceChildren(),this._make_selector()}_make_selector(){let t=this.datas?.columnNames||[],e=this._menu.querySelector("div.column-selector");if(!e&&t.length>0?(e=document.createElement("div"),e.classList.add("column-selector"),this._menu.appendChild(e)):e?.replaceChildren(),t.length<1)this._select=null;else if(t.length<=4){const s=document.createElement("table");s.style.borderCollapse="collapse",e.appendChild(s);let i=s.insertRow();i.style.textAlign="center",i.insertCell(),i.insertCell().innerHTML="↑";const h=[];for(let e=0;ethis._manager.platform.render(),n.appendChild(a),h.push(a)}h[0].checked=!0,this._select=()=>{const e=[];for(let s=0;s""+t));const s=document.createElement("span");s.innerHTML="↑",e.appendChild(s);const i=document.createElement("select");i.onchange=()=>this._manager.platform.render();for(const e of t){const t=document.createElement("option");t.value=e,t.innerText=e,i.appendChild(t)}i.value=t[0],e.appendChild(i),this._select=()=>[t.indexOf(i.value)]}}_clip(t){if(this._clip_pad===-1/0)return t;const e=[this.width,this.height];for(let s=0;st[1]&&(t[1]=this._pred_values[s][e]);return t}toPoint(t){if(0===this.datas.length)return[0,0];const e=[this.width,this.height],s=[],i=this._range();if(0===this.datas.dimension)s.push(scale(t[0],0,this.datas.length+this._pred_values.length,0,e[0]-2*this.padding[0])+this.padding[0],scale(t[1][0],i[0],i[1],0,e[1]-2*this.padding[1])+this.padding[1]);else{const h=this._select?.()??(0===this.datas.dimension?null:[Math.min(1,this.datas.dimension-1)]),r=Math.min(h[0],t[1].length-1);s.push(scale(t[0],0,this.datas.length+this._pred_values.length,0,e[0]-2*this.padding[0])+this.padding[0],scale(t[1][r],i[0],i[1],0,e[1]-2*this.padding[1])+this.padding[1])}return s.map((t=>isNaN(t)?0:t))}toValue(t){return t&&this.datas?[scale(t[0]-this.padding[0],0,this.width-2*this.padding[0],0,this.datas.length)]:[]}_render(){if(!this.datas||0===this.datas.length)return this._p.map((t=>t.remove())),this._p.length=0,void this._path.setAttribute("opacity",0);const t=this._select?.()??(0===this.datas.dimension?null:[Math.min(1,this.datas.dimension-1)]),e=this.datas.length,s=this.datas.x,i=this.datas.y,h=this._size,r=this._range(),n=[];for(let a=0;at.at)))),this._path.setAttribute("opacity",.5),this._lastpred&&this.testResult(this._lastpred),this._renderGrid()}_renderGrid(){this._grid.replaceChildren();const t=this._size,[e,s]=this._range(),i=this._getScales(e,s);for(const h of i){const i=scale(+h,e,s,0,t[1]-2*this.padding[1])+this.padding[1],r=document.createElementNS("http://www.w3.org/2000/svg","line");r.setAttribute("x1",0),r.setAttribute("x2",t[0]),r.setAttribute("y1",i),r.setAttribute("y2",i),r.setAttribute("stroke","gray");const n=document.createElementNS("http://www.w3.org/2000/svg","text");n.setAttribute("x",0),n.setAttribute("y",t[1]-i),n.setAttribute("fill","gray"),n.style.transform="scale(1, -1) translate(0, -100%)",n.innerHTML=h,this._grid.append(r,n)}}_getScales(t,e){const s=e-t;if(0===s)return[];let i=Math.floor(Math.log10(s)),h=10**i;s/h<2?(h/=2,i--):s/h>5&&(h*=2);const r=[];for(let s=e-e%h;s>=t;s-=h)r.push(i<0?s.toFixed(-i):s);return r}testResult(t){const e=this._manager.platform.task;if(this._lastpred=t,0===this._svg.querySelectorAll("g.tile-render").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile-render"),"CP"===e?this._svg.insertBefore(t,this._svg.firstChild):this._svg.appendChild(t)}if(this._r_tile=this._svg.querySelector("g.tile-render"),this._r_tile.replaceChildren(),this._pred_values=[],this._cp_pred_value=null,"TP"===e){this._pred_values=t;const e=document.createElementNS("http://www.w3.org/2000/svg","path");e.setAttribute("stroke","red"),e.setAttribute("fill-opacity",0),e.style.pointerEvents="none",this._r_tile.appendChild(e),this._pred_points?.forEach((t=>t.remove())),this._pred_points=[];const s=this.datas,i=[];s.length>0&&i.push(this.toPoint([s.length-1,s.x[s.length-1]||[s.y[s.length-1]]]));for(let e=0;et>this._cp_threshold))):t=t.concat(),this._cp_pred_value){let t=Math.max(...this._cp_pred_value);const e=Math.min(...this._cp_pred_value);t===e&&(t+=1);const s=document.createElement("canvas");s.width=this.width,s.height=this.height;const i=s.getContext("2d");let h=0;for(let s=0;s{let e="";for(let s=0;s{this._observe_target&&this._p.forEach(((t,e)=>t.title=this.datas.labels[e]))})),this._observer.observe(this._svg,{childList:!0}),this._will_render=!1}get svg(){return this._svg}get width(){return this._size[0]}get height(){return this._size[1]}get padding(){return Array.isArray(this._pad)?this._pad:[this._pad,this._pad]}set padding(t){this._pad=t,this.render()}set clipPadding(t){this._clip_pad=t,this.render()}get points(){return this._p}init(){this._pred_values=[],this._lastpred=[],this._r_tile?.remove(),this._grid.replaceChildren(),this._make_selector()}_make_selector(){let t=this.datas?.columnNames||[],e=this._menu.querySelector("div.column-selector");if(!e&&t.length>0?(e=document.createElement("div"),e.classList.add("column-selector"),this._menu.appendChild(e)):e?.replaceChildren(),t.length<1)this._select=null;else if(t.length<=4){const s=document.createElement("table");s.style.borderCollapse="collapse",e.appendChild(s);let i=s.insertRow();i.style.textAlign="center",i.insertCell(),i.insertCell().innerHTML="↑";const h=[];for(let e=0;ethis._manager.platform.render(),n.appendChild(a),h.push(a)}h[0].checked=!0,this._select=()=>{const e=[];for(let s=0;s""+t));const s=document.createElement("span");s.innerHTML="↑",e.appendChild(s);const i=document.createElement("select");i.onchange=()=>this._manager.platform.render();for(const e of t){const t=document.createElement("option");t.value=e,t.innerText=e,i.appendChild(t)}i.value=t[0],e.appendChild(i),this._select=()=>[t.indexOf(i.value)]}}_clip(t){if(this._clip_pad===-1/0)return t;const e=[this.width,this.height];for(let s=0;st[1]&&(t[1]=this._pred_values[s][e]);return t}toPoint(t){if(0===this.datas.length)return[0,0];const e=[this.width,this.height],s=[],i=this._range();if(0===this.datas.dimension)s.push(scale(t[0],0,this.datas.length+this._pred_values.length,0,e[0]-2*this.padding[0])+this.padding[0],scale(t[1][0],i[0],i[1],0,e[1]-2*this.padding[1])+this.padding[1]);else{const h=this._select?.()??(0===this.datas.dimension?null:[Math.min(1,this.datas.dimension-1)]),r=Math.min(h[0],t[1].length-1);s.push(scale(t[0],0,this.datas.length+this._pred_values.length,0,e[0]-2*this.padding[0])+this.padding[0],scale(t[1][r],i[0],i[1],0,e[1]-2*this.padding[1])+this.padding[1])}return s.map((t=>isNaN(t)?0:t))}toValue(t){return t&&this.datas?[scale(t[0]-this.padding[0],0,this.width-2*this.padding[0],0,this.datas.length)]:[]}_render(){if(!this.datas||0===this.datas.length)return this._p.map((t=>t.remove())),this._p.length=0,void this._path.setAttribute("opacity",0);const t=this._select?.()??(0===this.datas.dimension?null:[Math.min(1,this.datas.dimension-1)]),e=this.datas.length,s=this.datas.x,i=this.datas.y,h=this._size,r=this._range(),n=[];for(let a=0;at.at)))),this._path.setAttribute("opacity",.5),this._lastpred&&this.testResult(this._lastpred),this._renderGrid()}_renderGrid(){this._grid.replaceChildren();const t=this._size,[e,s]=this._range(),i=this._getScales(e,s);for(const h of i){const i=scale(+h,e,s,0,t[1]-2*this.padding[1])+this.padding[1],r=document.createElementNS("http://www.w3.org/2000/svg","line");r.setAttribute("x1",0),r.setAttribute("x2",t[0]),r.setAttribute("y1",i),r.setAttribute("y2",i),r.setAttribute("stroke","gray");const n=document.createElementNS("http://www.w3.org/2000/svg","text");n.setAttribute("x",0),n.setAttribute("y",t[1]-i),n.setAttribute("fill","gray"),n.style.transform="scale(1, -1) translate(0, -100%)",n.innerHTML=h,this._grid.append(r,n)}}_getScales(t,e){const s=e-t;if(0===s)return[];let i=Math.floor(Math.log10(s)),h=10**i;s/h<2?(h/=2,i--):s/h>5&&(h*=2);const r=[];for(let s=e-e%h;s>=t;s-=h)r.push(i<0?s.toFixed(-i):s);return r}testResult(t){const e=this._manager.platform.task;if(this._lastpred=t,0===this._svg.querySelectorAll("g.tile-render").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile-render"),"CP"===e?this._svg.insertBefore(t,this._svg.firstChild):this._svg.appendChild(t)}if(this._r_tile=this._svg.querySelector("g.tile-render"),this._r_tile.replaceChildren(),this._pred_values=[],this._cp_pred_value=null,"TP"===e){this._pred_values=t;const e=document.createElementNS("http://www.w3.org/2000/svg","path");e.setAttribute("stroke","red"),e.setAttribute("fill-opacity",0),e.style.pointerEvents="none",this._r_tile.appendChild(e),this._pred_points?.forEach((t=>t.remove())),this._pred_points=[];const s=this.datas,i=[];s.length>0&&i.push(this.toPoint([s.length-1,s.x[s.length-1]||[s.y[s.length-1]]]));for(let e=0;et>this._cp_threshold))):t=t.concat(),this._cp_pred_value){let t=Math.max(...this._cp_pred_value);const e=Math.min(...this._cp_pred_value);t===e&&(t+=1);const s=document.createElement("canvas");s.width=this.width,s.height=this.height;const i=s.getContext("2d");let h=0;for(let s=0;s{this._observe_target&&this._p.forEach(((t,e)=>t.title=this.datas.labels[e]))})),this._observer.observe(this._svg,{childList:!0})}get svg(){return this._svg}get width(){return this._size[0]}set width(t){this._size[0]=t,this._root.setAttribute("width",`${t}px`)}get height(){return this._size[1]}set height(t){this._size[1]=t,this._root.setAttribute("height",`${t}px`)}get padding(){return Array.isArray(this._pad)?this._pad:[this._pad,this._pad]}set padding(t){this._pad=t??0,this.render()}set clipPadding(t){this._clip_pad=t,this.render()}get points(){return this._p}set trainResult(t){const e=this._manager.platform.task;if("AD"===e){if(0===this._svg.querySelectorAll(".tile").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile","anormal_point"),this._svg.insertBefore(t,this._svg.firstChild)}const e=this._svg.querySelector(".tile");e.replaceChildren(),t.forEach(((t,s)=>{if(t){new DataCircle(e,this.points[s]).color=getCategoryColor(specialCategory.error)}}))}else if("SC"===e){if(0===this._svg.querySelectorAll(".tile").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile"),this._svg.insertBefore(t,this._svg.firstChild)}const e=this._svg.querySelector(".tile");e.replaceChildren(),t.forEach(((t,s)=>{new DataCircle(e,this.points[s]).color=getCategoryColor(t)}))}else if("DR"===e||"FS"===e||"TF"===e){if(0===this._svg.querySelectorAll(".tile").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile"),t.setAttribute("opacity",.5),this._svg.insertBefore(t,this._svg.firstChild)}const e=this._svg.querySelector(".tile");e.replaceChildren();const s=t[0].length;let i=t;1===s&&(i=i.map((t=>[t,0])));let a=[],r=[];for(let t=0;te[t]));a.push(Math.max(...e)),r.push(Math.min(...e))}const n=this.datas.dimension<=1?[this.height,this.height]:[this.width,this.height],h=n.map(((t,e)=>(t-10)/(a[e]-r[e])));let l=Math.min(...h);const d=[5,5];for(let t=0;tl)&&(isFinite(h[t])?d[t]+=(h[t]-l)*(a[t]-r[t])/2:d[t]=n[t]/2-r[t]);isFinite(l)||(l=0);let o=1/0,c=null;const p=Matrix.fromArray(this.points.map((t=>t.at)));for(let t=0;t<(this.datas.dimension<=1?1:2**s);t++){const e=t.toString(2).padStart(s,"0").split("").map((t=>!!+t)),n=i.map((t=>t.map(((t,s)=>((e[s]?a[s]-t+r[s]:t)-r[s])*l+d[s])))),h=Matrix.fromArray(n);h.sub(p);const g=h.norm();g{const i=new DataPoint(e,this.datas.dimension<=1?[this.points[s].at[0],t[0]]:t,this.points[s].category);i.radius=2;new DataLine(e,this.points[s],i).setRemoveListener((()=>i.remove()))}))}else if("GR"===e){if(0===this._svg.querySelectorAll(".tile").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile","generated"),t.setAttribute("opacity",.5),this._svg.insertBefore(t,this._svg.firstChild)}const e=this._svg.querySelector(".tile.generated");e.replaceChildren();let s=null;Array.isArray(t)&&2===t.length&&Array.isArray(t[0])&&Array.isArray(t[0][0])&&([t,s]=t),t.forEach(((t,i)=>{new DataPoint(e,this.toPoint(t),s?s[i][0]:0).radius=2}))}}get scale(){const t=this.datas.domain,e=[this.width,this.height],[s,i]=this.datas.range,a=this._select.map(((s,i)=>e[i]/(t[s][1]-t[s][0])));return 1===this._select.length&&(a[1]=e[1]/(i-s)),a}init(){this._lastpred=null,this._r_tile?.remove(),this._svg.querySelectorAll(".tile").forEach((t=>t.remove())),this._grid.replaceChildren(),this._make_selector()}_make_selector(){let t=this.datas?.columnNames||[],e=this._menu.querySelector("div.column-selector");if(!e&&t.length>0?(e=document.createElement("div"),e.classList.add("column-selector"),this._menu.appendChild(e)):e?.replaceChildren(),t.length<1)this._select=1===this.datas?.dimension?[0]:[0,1];else if(1===t.length){const s=document.createElement("table");s.style.borderCollapse="collapse",e.appendChild(s);let i=s.insertRow();i.style.textAlign="center",i.insertCell(),i.insertCell().innerHTML="→",i=s.insertRow();const a=i.insertCell();a.innerText=t[0],a.style.textAlign="right";const r=i.insertCell(),n=document.createElement("input");n.type="radio",n.name="data-d1",n.checked=!0,r.appendChild(n),this._select=1===this.datas.dimension?[0]:[0,1]}else if(t.length<=4){const s=document.createElement("table");s.style.borderCollapse="collapse",e.appendChild(s);let i=s.insertRow();i.style.textAlign="center",i.insertCell(),i.insertCell().innerHTML="→",i.insertCell().innerHTML="↑";const a=[],r=[];for(let e=0;e{this._select[1]===e&&(r[this._select[1]].checked=!1,r[this._select[0]].checked=!0,this._select[1]=this._select[0]),this._select[0]=e,this.render()},h.appendChild(l),a.push(l);const d=i.insertCell(),o=document.createElement("input");o.type="radio",o.name="data-d2",o.onchange=()=>{this._select[0]===e&&(a[this._select[0]].checked=!1,a[this._select[1]].checked=!0,this._select[0]=this._select[1]),this._select[1]=e,this.render()},d.appendChild(o),r.push(o)}a[0].checked=!0,r[1].checked=!0,this._select=[0,1]}else{t=t.map((t=>""+t));const s=document.createElement("span");s.innerHTML="→",e.appendChild(s);const i=document.createElement("select");i.onchange=()=>{const e=t.indexOf(i.value);this._select[1]===e&&(r.value=t[this._select[0]],this._select[1]=this._select[0]),this._select[0]=e,this.render()};for(const e of t){const t=document.createElement("option");t.value=e,t.innerText=e,i.appendChild(t)}i.value=t[0],e.appendChild(i);const a=document.createElement("span");a.innerHTML="↑",a.style.display="inline-block",e.appendChild(a);const r=document.createElement("select");r.onchange=()=>{const e=t.indexOf(r.value);this._select[0]===e&&(i.value=t[this._select[1]],this._select[0]=this._select[1]),this._select[1]=e,this.render()};for(const e of t){const t=document.createElement("option");t.value=e,t.innerText=e,r.appendChild(t)}r.value=t[1],e.appendChild(r),this._select=[0,1]}}_clip(t){if(this._clip_pad===-1/0)return t;const e=[this.width,this.height];for(let s=0;sscale(t[i],e[i][0],e[i][1],0,s[a]-2*this.padding[a])+this.padding[a]));return 1===r.length&&t.length>1&&(r[1]=scale(t[1],i,a,0,s[1]-2*this.padding[1])+this.padding[1]),r.map((t=>isNaN(t)?0:t))}_render(){if(!this.datas||0===this.datas.length)return this._p.map((t=>t.remove())),void(this._p.length=0);const t=this.datas.length,e=this.datas.x,s=this.datas.domain,i=this.datas.y,a=this._size,r=this.datas.index,n=this.datas.indexRange,[h,l]=this.datas.range,d=[];for(let o=0;oscale(e[o][t],s[t][0],s[t][1],0,a[i]-2*this.padding[i])+this.padding[i])));const o=Math.max(1,Math.min(5,Math.floor(2e3/t)));for(let e=0;e5&&(a*=2);const r=[];for(let s=e-e%a;s>=t;s-=a)r.push(i<0?s.toFixed(-i):s);return r}testData(t){this._lastpred=null,Array.isArray(t)||(t=[t,t]),this._laststep=t;const e=[];if(0===this.datas.dimension){const t=this.datas.indexRange;e[0]=[isNaN(t[0])?0:t[0],isNaN(t[1])?this.datas.length:t[1]]}else e.push(...this.datas.domain);this._lastdomain=e;const s=[this.width,this.height],i=[];if(this.datas.dimension<=2)for(let a=0;at?specialCategory.error:specialCategory.errorRate(0)))),this._r_tile?.remove();1===this.datas.dimension&&("RG"===r||"IN"===r)?(this._r_tile=document.createElementNS("http://www.w3.org/2000/svg","g"),this._r_tile.classList.add("tile-render"),this._r_tile.setAttribute("opacity",1),this._svg.appendChild(this._r_tile)):(this._r_tile=document.createElementNS("http://www.w3.org/2000/svg","g"),this._r_tile.classList.add("tile-render"),this._r_tile.setAttribute("opacity",.5),this._svg.insertBefore(this._r_tile,this._svg.firstChild)),this._r_tile.replaceChildren();let n=t.some((t=>!Number.isInteger(t)));if(this.datas.dimension<=1){const h=[];if("IN"===r||n&&"DE"!==r){const[e,r]=this.datas.range;for(let n=0;n{let e="";for(let s=0;s100&&(n||=new Set(t).size>100);const h=document.createElementNS("http://www.w3.org/2000/svg","g");this._r_tile.appendChild(h);const l=0===this._select[1]?[e[1]/i[1]*i[0],e[0]/i[0]*i[1]]:e;new DataHulls(h,a,l,n||"DE"===r)}else{const e=document.createElementNS("http://www.w3.org/2000/svg","g");this._r_tile.appendChild(e);const s=t.every(Number.isInteger);for(let i=0;i{this._observe_target&&this._p.forEach(((t,e)=>t.title=this.datas.labels[e]))})),this._observer.observe(this._svg,{childList:!0})}get svg(){return this._svg}get width(){return this._size[0]}set width(t){this._size[0]=t,this._root.setAttribute("width",`${t}px`)}get height(){return this._size[1]}set height(t){this._size[1]=t,this._root.setAttribute("height",`${t}px`)}get padding(){return Array.isArray(this._pad)?this._pad:[this._pad,this._pad]}set padding(t){this._pad=t??0,this.render()}set clipPadding(t){this._clip_pad=t,this.render()}get points(){return this._p}set trainResult(t){const e=this._manager.platform.task;if("AD"===e){if(0===this._svg.querySelectorAll(".tile").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile","anormal_point"),this._svg.insertBefore(t,this._svg.firstChild)}const e=this._svg.querySelector(".tile");e.replaceChildren(),t.forEach(((t,s)=>{if(t){new DataCircle(e,this.points[s]).color=getCategoryColor(specialCategory.error)}}))}else if("SC"===e){if(0===this._svg.querySelectorAll(".tile").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile"),this._svg.insertBefore(t,this._svg.firstChild)}const e=this._svg.querySelector(".tile");e.replaceChildren(),t.forEach(((t,s)=>{new DataCircle(e,this.points[s]).color=getCategoryColor(t)}))}else if("DR"===e||"FS"===e||"TF"===e){if(0===this._svg.querySelectorAll(".tile").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile"),t.setAttribute("opacity",.5),this._svg.insertBefore(t,this._svg.firstChild)}const e=this._svg.querySelector(".tile");e.replaceChildren();const s=t[0].length;let i=t;1===s&&(i=i.map((t=>[t,0])));let a=[],r=[];for(let t=0;te[t]));a.push(Math.max(...e)),r.push(Math.min(...e))}const n=this.datas.dimension<=1?[this.height,this.height]:[this.width,this.height],h=n.map(((t,e)=>(t-10)/(a[e]-r[e])));let l=Math.min(...h);const o=[5,5];for(let t=0;tl)&&(isFinite(h[t])?o[t]+=(h[t]-l)*(a[t]-r[t])/2:o[t]=n[t]/2-r[t]);isFinite(l)||(l=0);let d=1/0,c=null;const p=Matrix.fromArray(this.points.map((t=>t.at)));for(let t=0;t<(this.datas.dimension<=1?1:2**s);t++){const e=t.toString(2).padStart(s,"0").split("").map((t=>!!+t)),n=i.map((t=>t.map(((t,s)=>((e[s]?a[s]-t+r[s]:t)-r[s])*l+o[s])))),h=Matrix.fromArray(n);h.sub(p);const g=h.norm();g{const i=new DataPoint(e,this.datas.dimension<=1?[this.points[s].at[0],t[0]]:t,this.points[s].category);i.radius=2;new DataLine(e,this.points[s],i).setRemoveListener((()=>i.remove()))}))}else if("GR"===e){if(0===this._svg.querySelectorAll(".tile").length){const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("tile","generated"),t.setAttribute("opacity",.5),this._svg.insertBefore(t,this._svg.firstChild)}const e=this._svg.querySelector(".tile.generated");e.replaceChildren();let s=null;Array.isArray(t)&&2===t.length&&Array.isArray(t[0])&&Array.isArray(t[0][0])&&([t,s]=t),t.forEach(((t,i)=>{new DataPoint(e,this.toPoint(t),s?s[i][0]:0).radius=2}))}}get scale(){const t=this.datas.domain,e=[this.width,this.height],[s,i]=this.datas.range,a=this._select.map(((s,i)=>e[i]/(t[s][1]-t[s][0])));return 1===this._select.length&&(a[1]=e[1]/(i-s)),a}init(){this._lastpred=null,this._r_tile?.remove(),this._svg.querySelectorAll(".tile").forEach((t=>t.remove())),this._grid.replaceChildren(),this._make_selector()}_make_selector(){let t=this.datas?.columnNames||[],e=this._menu.querySelector("div.column-selector");if(!e&&t.length>0?(e=document.createElement("div"),e.classList.add("column-selector"),this._menu.appendChild(e)):e?.replaceChildren(),t.length<1)this._select=1===this.datas?.dimension?[0]:[0,1];else if(1===t.length){const s=document.createElement("table");s.style.borderCollapse="collapse",e.appendChild(s);let i=s.insertRow();i.style.textAlign="center",i.insertCell(),i.insertCell().innerHTML="→",i=s.insertRow();const a=i.insertCell();a.innerText=t[0],a.style.textAlign="right";const r=i.insertCell(),n=document.createElement("input");n.type="radio",n.name="data-d1",n.checked=!0,r.appendChild(n),this._select=1===this.datas.dimension?[0]:[0,1]}else if(t.length<=4){const s=document.createElement("table");s.style.borderCollapse="collapse",e.appendChild(s);let i=s.insertRow();i.style.textAlign="center",i.insertCell(),i.insertCell().innerHTML="→",i.insertCell().innerHTML="↑";const a=[],r=[];for(let e=0;e{this._select[1]===e&&(r[this._select[1]].checked=!1,r[this._select[0]].checked=!0,this._select[1]=this._select[0]),this._select[0]=e,this.render()},h.appendChild(l),a.push(l);const o=i.insertCell(),d=document.createElement("input");d.type="radio",d.name="data-d2",d.onchange=()=>{this._select[0]===e&&(a[this._select[0]].checked=!1,a[this._select[1]].checked=!0,this._select[0]=this._select[1]),this._select[1]=e,this.render()},o.appendChild(d),r.push(d)}a[0].checked=!0,r[1].checked=!0,this._select=[0,1]}else{t=t.map((t=>""+t));const s=document.createElement("span");s.innerHTML="→",e.appendChild(s);const i=document.createElement("select");i.onchange=()=>{const e=t.indexOf(i.value);this._select[1]===e&&(r.value=t[this._select[0]],this._select[1]=this._select[0]),this._select[0]=e,this.render()};for(const e of t){const t=document.createElement("option");t.value=e,t.innerText=e,i.appendChild(t)}i.value=t[0],e.appendChild(i);const a=document.createElement("span");a.innerHTML="↑",a.style.display="inline-block",e.appendChild(a);const r=document.createElement("select");r.onchange=()=>{const e=t.indexOf(r.value);this._select[0]===e&&(i.value=t[this._select[1]],this._select[0]=this._select[1]),this._select[1]=e,this.render()};for(const e of t){const t=document.createElement("option");t.value=e,t.innerText=e,r.appendChild(t)}r.value=t[1],e.appendChild(r),this._select=[0,1]}}_clip(t){if(this._clip_pad===-1/0)return t;const e=[this.width,this.height];for(let s=0;sscale(t[i],e[i][0],e[i][1],0,s[a]-2*this.padding[a])+this.padding[a]));return 1===r.length&&t.length>1&&(r[1]=scale(t[1],i,a,0,s[1]-2*this.padding[1])+this.padding[1]),r.map((t=>isNaN(t)?0:t))}_render(){if(!this.datas||0===this.datas.length)return this._p.map((t=>t.remove())),void(this._p.length=0);const t=this.datas.length,e=this.datas.x,s=this.datas.domain,i=this.datas.y,a=this._size,r=this.datas.index,n=this.datas.indexRange,[h,l]=this.datas.range,o=[];for(let d=0;dscale(e[d][t],s[t][0],s[t][1],0,a[i]-2*this.padding[i])+this.padding[i])));const d=Math.max(1,Math.min(5,Math.floor(2e3/t)));for(let e=0;e5&&(a*=2);const r=[];for(let s=e-e%a;s>=t;s-=a)r.push(i<0?s.toFixed(-i):s);return r}testData(t){this._lastpred=null,Array.isArray(t)||(t=[t,t]),this._laststep=t;const e=[];if(0===this.datas.dimension){const t=this.datas.indexRange;e[0]=[isNaN(t[0])?0:t[0],isNaN(t[1])?this.datas.length:t[1]]}else e.push(...this.datas.domain);this._lastdomain=e;const s=[this.width,this.height],i=[];if(this.datas.dimension<=2)for(let a=0;at?specialCategory.error:specialCategory.errorRate(0)))),this._r_tile?.remove();1===this.datas.dimension&&("RG"===r||"IN"===r)?(this._r_tile=document.createElementNS("http://www.w3.org/2000/svg","g"),this._r_tile.classList.add("tile-render"),this._r_tile.setAttribute("opacity",1),this._svg.appendChild(this._r_tile)):(this._r_tile=document.createElementNS("http://www.w3.org/2000/svg","g"),this._r_tile.classList.add("tile-render"),this._r_tile.setAttribute("opacity",.5),this._svg.insertBefore(this._r_tile,this._svg.firstChild)),this._r_tile.replaceChildren();let n=t.some((t=>!Number.isInteger(t)));if(this.datas.dimension<=1){const h=[];if("IN"===r||n&&"DE"!==r){const[e,r]=this.datas.range;for(let n=0;n{let e="";for(let s=0;s100&&(n||=new Set(t).size>100);const h=document.createElementNS("http://www.w3.org/2000/svg","g");this._r_tile.appendChild(h);const l=0===this._select[1]?[e[1]/i[1]*i[0],e[0]/i[0]*i[1]]:e;new DataHulls(h,a,l,n||"DE"===r)}else{const e=document.createElementNS("http://www.w3.org/2000/svg","g");this._r_tile.appendChild(e);const s=t.every(Number.isInteger);for(let i=0;i{Array.isArray(e)&&!e.includes(t.category)?t.remove():n.push(t)}));const o=this._renderer.points;for(let t=0;t{let o=Array.isArray(e)?n.find((t=>t.category===e[i])):n[i];if(o||(o=new DataPoint(s,this._renderer.toPoint(t),Array.isArray(e)?e[i]:e),o.plotter(DataPointStarPlotter)),r){const t=this._renderer.points,r=this._renderer.datas.y;for(let n=0;n{this._centroids.forEach(((e,r)=>{e.move(this._renderer.toPoint(t[r]),i)}))}))}terminate(){this._svg.querySelector("g.centroids")?.remove()}} \ No newline at end of file +import{DataPointStarPlotter,DataPoint,DataLine}from"./figure.js";export default class CentroidPlotter{constructor(t){this._renderer=t,this._svg=t.svg}set(t,e,{line:r=!1,duration:i=0}={}){let s=this._svg.querySelector("g.centroids");if(!s){s=document.createElementNS("http://www.w3.org/2000/svg","g"),s.classList.add("centroids"),this._svg.appendChild(s);const t=document.createElementNS("http://www.w3.org/2000/svg","g");t.classList.add("c-line"),s.appendChild(t),this._centroids_line=[],this._centroids=null}const n=[];this._centroids&&this._centroids.forEach((t=>{Array.isArray(e)&&!e.includes(t.category)?t.remove():n.push(t)}));const o=this._renderer.points;for(let t=0;t{let o=Array.isArray(e)?n.find((t=>t.category===e[i])):n[i];if(o||(o=new DataPoint(s,this._renderer.toPoint(t),Array.isArray(e)?e[i]:e),o.plotter(DataPointStarPlotter)),r){const t=this._renderer.points,r=this._renderer.datas.y;for(let n=0;n{this._centroids.forEach(((e,r)=>{e.move(this._renderer.toPoint(t[r]),i)}))}))}terminate(){this._svg.querySelector("g.centroids")?.remove()}} \ No newline at end of file diff --git a/js/renderer/util/figure.js b/js/renderer/util/figure.js new file mode 100644 index 00000000..da41fd9a --- /dev/null +++ b/js/renderer/util/figure.js @@ -0,0 +1 @@ +import{getCategoryColor,specialCategory}from"../../utils.js";class DataPointCirclePlotter{constructor(t,e){this._svg=t,this.item=e,e||(this.item=document.createElementNS("http://www.w3.org/2000/svg","circle"),this._svg.append(this.item))}attr(t,e){return void 0!==e?(this.item.setAttribute(t,e),this):this.item.getAttribute(t)}cx(t){return this.attr("cx",t)}cy(t){return this.attr("cy",t)}color(t){return this.attr("fill",t)}radius(t){return this.attr("r",t)}title(t){if(this.item.replaceChildren(),t&&""!==t){const e=document.createElementNS("http://www.w3.org/2000/svg","title");this.item.append(e),e.replaceChildren(t)}return this}remove(){return this.item.remove()}}export class DataPointStarPlotter{constructor(t,e,i){this._svg=t,this._c=[0,0],this._r=5,e?(this.g=e,this.polygon=i):(this.g=document.createElementNS("http://www.w3.org/2000/svg","g"),this._svg.append(this.g),this.polygon=document.createElementNS("http://www.w3.org/2000/svg","polygon"),this.g.append(this.polygon),this.polygon.setAttribute("points",this._path()),this.polygon.setAttribute("stroke","black"))}_path(){return[[-Math.sin(2*Math.PI/5),-Math.cos(2*Math.PI/5)],[-Math.sin(Math.PI/5)/2,-Math.cos(Math.PI/5)/2],[0,-1],[Math.sin(Math.PI/5)/2,-Math.cos(Math.PI/5)/2],[Math.sin(2*Math.PI/5),-Math.cos(2*Math.PI/5)],[Math.sin(3*Math.PI/5)/2,-Math.cos(3*Math.PI/5)/2],[Math.sin(4*Math.PI/5),-Math.cos(4*Math.PI/5)],[0,.5],[-Math.sin(4*Math.PI/5),-Math.cos(4*Math.PI/5)],[-Math.sin(3*Math.PI/5)/2,-Math.cos(3*Math.PI/5)/2]].reduce(((t,e)=>t+e[0]*this._r+","+e[1]*this._r+" "),"")}cx(t){return this._c[0]=t||this._c[0],void 0!==t?(this.g.setAttribute("transform","translate("+this._c[0]+", "+this._c[1]+")"),this):this._c[0]}cy(t){return this._c[1]=t||this._c[1],void 0!==t?(this.g.setAttribute("transform","translate("+this._c[0]+", "+this._c[1]+")"),this):this._c[1]}color(t){return void 0!==t?(this.polygon.setAttribute("fill",t),this):this.polygon.getAttribute("fill")}radius(t){return this._r=t||this._r,void 0!==t?(this.polygon.setAttribute("points",this._path()),this):this._r}title(t){if(this.polygon.replaceChildren(),t&&""!==t){const e=document.createElementNS("http://www.w3.org/2000/svg","title");this.polygon.append(e),e.replaceChildren(t)}return this}duration(t){return this.g.style.transitionDuration=t+"ms",this.g.style.transitionTimingFunction="linear",this.polygon.style.transitionDuration=t+"ms",this.polygon.style.transitionTimingFunction="linear",this}remove(){return this.g.remove()}}class DataVector{constructor(t){this.value=t instanceof DataVector?t.value:t}get length(){return Math.sqrt(this.value.reduce(((t,e)=>t+e*e),0))}map(t){return new DataVector(this.value.map(t))}reduce(t,e){return this.value.reduce(t,e)}add(t){return this.map(((e,i)=>e+t.value[i]))}sub(t){return this.map(((e,i)=>e-t.value[i]))}mult(t){return this.map((e=>e*t))}div(t){return this.map((e=>e/t))}dot(t){return this.value.reduce(((e,i,s)=>e+i*t.value[s]),0)}distance(t){return Math.sqrt(this.value.reduce(((e,i,s)=>e+(i-t.value[s])**2),0))}angleCos(t){return this.dot(t)/(this.length*t.length)}equals(t){return this.value.every(((e,i)=>e===t.value[i]))}}export class DataPoint{constructor(t,e=[0,0],i=0){this.svg=t,this.vector=new DataVector(e),this._color=getCategoryColor(i),this._category=i,this._radius=5,this._plotter=new DataPointCirclePlotter(this.svg),this._binds=[],this.display()}display(){this._plotter.cx(""+this.vector.value[0]).cy(""+this.vector.value[1]).radius(this._radius).color(this._color),this._binds.forEach((t=>t.display()))}get item(){return this._plotter.item}get at(){return this.vector.value}set at(t){this.vector=new DataVector(t),this.display()}get color(){return this._color}get category(){return this._category}set category(t){this._category=t,this._color=getCategoryColor(t),this.display()}get radius(){return this._radius}set radius(t){this._radius=t,this.display()}set title(t){this._plotter.title(t)}plotter(t){this._plotter.remove(),this._plotter=new t(this.svg),this.display()}remove(){this._plotter.remove(),this._binds.forEach((t=>t.remove()))}move(t,e=1e3){this.vector=new DataVector(t),this._plotter.duration(e).cx(this.vector.value[0]).cy(this.vector.value[1]),this._binds.forEach((t=>t.move(e)))}distance(t){return this.vector.distance(t.vector)}bind(t){this._binds.push(t)}removeBind(t){this._binds=this._binds.filter((e=>e!==t))}static sum(t){return 0===t.length?[]:t.slice(1).reduce(((t,e)=>t.add(e.vector)),t[0].vector)}static mean(t){return 0===t.length?[]:DataPoint.sum(t).div(t.length)}}export class DataCircle{constructor(t,e){this._svg=t,this.item=document.createElementNS("http://www.w3.org/2000/svg","circle"),this._svg.append(this.item),this.item.setAttribute("fill-opacity",0),this._at=e,this._color=null,this._width=4,e.bind(this),this.display()}get color(){return this._color||this._at.color}set color(t){this._color=t,this.display()}set title(t){if(this.item.replaceChildren(),t&&t.length>0){const e=document.createElementNS("http://www.w3.org/2000/svg","title");this.item.append(e),e.replaceChildren(t)}}display(){this.item.setAttribute("cx",this._at.at[0]),this.item.setAttribute("cy",this._at.at[1]),this.item.setAttribute("stroke",this.color),this.item.setAttribute("stroke-width",this._width),this.item.setAttribute("r",this._at._radius)}remove(){this.item.remove(),this._at.removeBind(this)}}export class DataLine{constructor(t,e,i){this._svg=t,this.item=document.createElementNS("http://www.w3.org/2000/svg","line"),this._svg.append(this.item),this._from=e,this._to=i,this._remove_listener=null,e&&e.bind(this),i&&i.bind(this),this.display()}set from(t){this._from&&this._from.removeBind(this),this._from=t,this._from.bind(this)}set to(t){this._to&&this._to.removeBind(this),this._to=t,this._to.bind(this)}display(){this._from&&this._to&&(this.item.setAttribute("x1",this._from.at[0]),this.item.setAttribute("y1",this._from.at[1]),this.item.setAttribute("x2",this._to.at[0]),this.item.setAttribute("y2",this._to.at[1]),this.item.setAttribute("stroke",this._from.color))}move(t=1e3){if(!this._from||!this._to)return;if(0===t)return void this.display();const e=+this.item.getAttribute("x1"),i=+this.item.getAttribute("y1"),s=+this.item.getAttribute("x2"),r=+this.item.getAttribute("y2"),h=this._from.at[0]-e,o=this._from.at[1]-i,a=this._to.at[0]-s,l=this._to.at[1]-r;let n=0,c=0;const u=_=>{n||(n=_);const m=Math.min(1,(_-n)/t);if(Math.abs(_-c)>15){if(0!==h&&this.item.setAttribute("x1",e+h*m),0!==o&&this.item.setAttribute("y1",i+o*m),0!==a&&this.item.setAttribute("x2",s+a*m),0!==l&&this.item.setAttribute("y2",r+l*m),m>=1)return;c=_}requestAnimationFrame(u)};requestAnimationFrame(u)}remove(){this.item.remove(),this._from&&this._from.removeBind(this),this._from=null,this._to&&this._to.removeBind(this),this._to=null,this._remove_listener&&this._remove_listener(this)}setRemoveListener(t){this._remove_listener=t}}export class DataConvexHull{constructor(t,e){this._svg=t,this.item=document.createElementNS("http://www.w3.org/2000/svg","polygon"),this._svg.append(this.item),this._points=e,this._color=null,this.display()}get color(){return this._color||this._points[0].color}set color(t){this._color=t,this.display()}_argmin(t,e){return 0===t.length?-1:(t=e?t.map(e):t).indexOf(Math.min(...t))}_convexPoints(){if(this._points.length<=3)return this._points;let t=[].concat(this._points),e=this._argmin(t,(t=>t.at[1]));const i=t.splice(e,1)[0];t.sort(((t,e)=>{let s=t.vector.sub(i.vector),r=e.vector.sub(i.vector);return s.value[0]/s.length-r.value[0]/r.length}));let s=[i];for(let e=0;e=3;){let r=s.length;const h=s[r-1].vector.sub(s[r-2].vector).value,o=t[e].vector.sub(s[r-2].vector).value,a=i.vector.sub(s[r-2].vector).value;if((h[0]*a[1]-h[1]*a[0])*(h[0]*o[1]-h[1]*o[0])>0)break;s.pop()}s.push(t[e])}return s}display(){let t=this._convexPoints().reduce(((t,e)=>t+e.at[0]+","+e.at[1]+" "),"");this.item.setAttribute("points",t),this.item.setAttribute("stroke",this.color),this.item.setAttribute("fill",this.color),this.item.setAttribute("opacity",.5)}remove(){this.item.remove()}}class DataMap{constructor(){this._data=[],this._size=[0,0]}get rows(){return this._size[0]}get cols(){return this._size[1]}at(t,e){return t<0||!this._data[t]||e<0?void 0:this._data[t][e]}set(t,e,i){this._data[t]||(this._data[t]=[]),this._data[t][e]=i,this._size[0]=Math.max(this._size[0],t+1),this._size[1]=Math.max(this._size[1],e+1)}}export class DataHulls{constructor(t,e,i,s=!1,r=null){this._svg=t,this._categories=e,this._tileSize=i,Array.isArray(this._tileSize)||(this._tileSize=[this._tileSize,this._tileSize]),this._use_canvas=s,this._mousemove=r,this.display()}display(){if(this._use_canvas){const t=document.querySelector("#plot-area svg"),e=document.createElement("canvas");e.width=t.getBoundingClientRect().width,e.height=t.getBoundingClientRect().height;let i=e.getContext("2d");for(let t=0;t{const e=d3.pointer(t);this._mousemove&&this._mousemove(s._categories[Math.round(e[1]/s._tileSize)][Math.round(e[0]/s._tileSize)])})}let t=new DataMap;for(let e=0;e0;){let[e,i]=a.pop();t.at(e,i)===r?(h.set(e,i,1),t.set(e,i,specialCategory.never),a.push([e-1,i]),a.push([e+1,i]),a.push([e,i-1]),a.push([e,i+1]),o.set(e,i,1!==h.at(e-1,i)&&t.at(e-1,i)!==r||1!==h.at(e+1,i)&&t.at(e+1,i)!==r||1!==h.at(e,i-1)&&t.at(e,i-1)!==r||1!==h.at(e,i+1)&&t.at(e,i+1)!==r)):void 0===t.at(e,i)&&null===r&&(l=!0)}if(l)continue;let n=[[i,s]],c=i,u=s+1;const _=t.rows*t.cols;let m=0,g="r";for(;c!=i||u!=s;){let t=h.at(c-1,u-1),i=h.at(c-1,u),s=h.at(c,u-1),r=h.at(c,u);if(i&&t&&s&&r){e.push([c,u]);break}if(i&&t&&s)n.push([c,u]),g="b";else if(t&&s&&r)n.push([c,u]),g="r";else if(s&&r&&i)n.push([c,u]),g="t";else if(r&&i&&t)n.push([c,u]),g="l";else if(i&&t)g="l";else if(t&&s)g="b";else if(s&&r)g="r";else if(r&&i)g="t";else if(i&&s)n.push([c,u]),"l"===g?g="t":"r"===g?g="b":e.push([c,u]);else if(t&&r)n.push([c,u]),"t"===g?g="r":"b"===g?g="l":e.push([c,u]);else if(i)n.push([c,u]),g="t";else if(t)n.push([c,u]),g="l";else if(s)n.push([c,u]),g="b";else{if(!r){e.push([c,u]);break}n.push([c,u]),g="r"}if("r"===g?u+=1:"l"===g?u-=1:"b"===g?c+=1:"t"===g&&(c-=1),m+=1,m>=_){e.push([c,u]);break}}const p=document.createElementNS("http://www.w3.org/2000/svg","polygon");this._svg.append(p),p.setAttribute("points",n.reduce(((t,e)=>t+e[1]*this._tileSize[0]+","+e[0]*this._tileSize[1]+" "),"")),p.setAttribute("fill",null===r?"white":getCategoryColor(r))}if(e.length>0){let t="";e.length>100?(t="[",t+=e.slice(0,50).map(JSON.stringify).join(","),t+=",...,",t+=e.slice(-50).map(JSON.stringify).join(","),t+="]"):t=JSON.stringify(e),console.log("invalid loop condition at "+t)}}} \ No newline at end of file diff --git a/js/utils.js b/js/utils.js index 2674938f..b92c7097 100644 --- a/js/utils.js +++ b/js/utils.js @@ -1 +1 @@ -export class BaseWorker{constructor(t,e){this._worker=new Worker(t,e)}_postMessage(t){const e=new Promise((t=>{const e=i=>{this._worker.removeEventListener("message",e,!1),t(i)};this._worker.addEventListener("message",e,!1)}));return this._worker.postMessage(t),e}terminate(){this._worker.terminate()}}class DataPointCirclePlotter{constructor(t,e){this._svg=t,this.item=e||this._svg.append("circle")}attr(t,e){return void 0!==e?this.item.attr(t,e)&&this:this.item.attr(t)}cx(t){return this.attr("cx",t)}cy(t){return this.attr("cy",t)}color(t){return this.attr("fill",t)}radius(t){return this.attr("r",t)}title(t){return this.item.selectAll("*").remove(),t&&""!==t&&this.item.append("title").text(t),this}transition(){return new DataPointCirclePlotter(this._svg,this.item.transition())}duration(t){return new DataPointCirclePlotter(this._svg,this.item.duration(t))}remove(){return this.item.remove()}}export class DataPointStarPlotter{constructor(t,e,i){this._svg=t,this._c=[0,0],this._r=5,e?(this.g=e,this.polygon=i):(this.g=this._svg.append("g"),this.polygon=this.g.append("polygon"),this.polygon.attr("points",this._path()).attr("stroke","black"))}_path(){return[[-Math.sin(2*Math.PI/5),-Math.cos(2*Math.PI/5)],[-Math.sin(Math.PI/5)/2,-Math.cos(Math.PI/5)/2],[0,-1],[Math.sin(Math.PI/5)/2,-Math.cos(Math.PI/5)/2],[Math.sin(2*Math.PI/5),-Math.cos(2*Math.PI/5)],[Math.sin(3*Math.PI/5)/2,-Math.cos(3*Math.PI/5)/2],[Math.sin(4*Math.PI/5),-Math.cos(4*Math.PI/5)],[0,.5],[-Math.sin(4*Math.PI/5),-Math.cos(4*Math.PI/5)],[-Math.sin(3*Math.PI/5)/2,-Math.cos(3*Math.PI/5)/2]].reduce(((t,e)=>t+e[0]*this._r+","+e[1]*this._r+" "),"")}cx(t){return this._c[0]=t||this._c[0],void 0!==t?this.g.attr("transform","translate("+this._c[0]+", "+this._c[1]+")")&&this:this._c[0]}cy(t){return this._c[1]=t||this._c[1],void 0!==t?this.g.attr("transform","translate("+this._c[0]+", "+this._c[1]+")")&&this:this._c[1]}color(t){return void 0!==t?this.polygon.attr("fill",t)&&this:this.polygon.attr("fill")}radius(t){return this._r=t||this._r,void 0!==t?this.polygon.attr("points",this._path())&&this:this._r}title(t){return this.polygon.selectAll("*").remove(),t&&""!==t&&this.polygon.append("title").text(t),this}transition(){return new DataPointStarPlotter(this._svg,this.g.transition(),this.polygon.transition())}duration(t){return new DataPointStarPlotter(this._svg,this.g.duration(t),this.polygon.duration(t))}remove(){return this.g.remove()}}class DataVector{constructor(t){this.value=t instanceof DataVector?t.value:t}get length(){return Math.sqrt(this.value.reduce(((t,e)=>t+e*e),0))}map(t){return new DataVector(this.value.map(t))}reduce(t,e){return this.value.reduce(t,e)}add(t){return this.map(((e,i)=>e+t.value[i]))}sub(t){return this.map(((e,i)=>e-t.value[i]))}mult(t){return this.map((e=>e*t))}div(t){return this.map((e=>e/t))}dot(t){return this.value.reduce(((e,i,s)=>e+i*t.value[s]),0)}distance(t){return Math.sqrt(this.value.reduce(((e,i,s)=>e+(i-t.value[s])**2),0))}angleCos(t){return this.dot(t)/(this.length*t.length)}equals(t){return this.value.every(((e,i)=>e===t.value[i]))}}const categoryColors={"-2":d3.rgb(255,0,0),"-1":d3.rgb(255,255,255),0:d3.rgb(0,0,0)};export const specialCategory={error:-2,errorRate:t=>-1-t,dummy:-2,density:t=>-1+t,never:-3};export const getCategoryColor=function(t){if(isNaN(t))return categoryColors[0];if(!Number.isInteger(t)){let e=getCategoryColor(Math.floor(t)),i=getCategoryColor(Math.ceil(t)),s=t-Math.floor(t);return d3.rgb(Math.round(e.r+(i.r-e.r)*s),Math.round(e.g+(i.g-e.g)*s),Math.round(e.b+(i.b-e.b)*s))}if(!categoryColors[t%=1e3]){let e=0;for(;;){e+=1;const i=[Math.random(),Math.random(),Math.random()];if(i.every((t=>t>.8)))continue;let s=1/0;for(const e of Object.keys(categoryColors)){if(+e<0||Math.abs(+e-t)>10)continue;const r=(i[0]-categoryColors[e].r/256)**2+(i[1]-categoryColors[e].g/256)**2+(i[2]-categoryColors[e].b/256)**2;rt.display()))}get item(){return this._plotter.item}get at(){return this.vector.value}set at(t){this.vector=new DataVector(t),this.display()}get color(){return this._color}get category(){return this._category}set category(t){this._category=t,this._color=getCategoryColor(t),this.display()}get radius(){return this._radius}set radius(t){this._radius=t,this.display()}set title(t){this._plotter.title(t)}plotter(t){this._plotter.remove(),this._plotter=new t(this.svg),this.display()}remove(){this._plotter.remove(),this._binds.forEach((t=>t.remove()))}move(t,e=1e3){this.vector=new DataVector(t),this._plotter.transition().duration(e).cx(this.vector.value[0]).cy(this.vector.value[1]),this._binds.forEach((t=>t.move(e)))}distance(t){return this.vector.distance(t.vector)}bind(t){this._binds.push(t)}removeBind(t){this._binds=this._binds.filter((e=>e!==t))}static sum(t){return 0===t.length?[]:t.slice(1).reduce(((t,e)=>t.add(e.vector)),t[0].vector)}static mean(t){return 0===t.length?[]:DataPoint.sum(t).div(t.length)}}export class DataCircle{constructor(t,e){this._svg=d3.select(t),this.item=this._svg.append("circle").attr("fill-opacity",0),this._at=e,this._color=null,this._width=4,e.bind(this),this.display()}get color(){return this._color||this._at.color}set color(t){this._color=t,this.display()}set title(t){this.item.selectAll("*").remove(),t&&t.length>0&&this.item.append("title").text(t)}display(){this.item.attr("cx",this._at.at[0]).attr("cy",this._at.at[1]).attr("stroke",this.color).attr("stroke-width",this._width).attr("r",this._at._radius)}move(t=1e3){this.item.transition().duration(t).attr("cx",this._at.at[0]).attr("cy",this._at.at[1])}remove(){this.item.remove(),this._at.removeBind(this)}}export class DataLine{constructor(t,e,i){this._svg=d3.select(t),this.item=this._svg.append("line"),this._from=e,this._to=i,this._remove_listener=null,e&&e.bind(this),i&&i.bind(this),this.display()}set from(t){this._from&&this._from.removeBind(this),this._from=t,this._from.bind(this)}set to(t){this._to&&this._to.removeBind(this),this._to=t,this._to.bind(this)}display(){this._from&&this._to&&this.item.attr("x1",this._from.at[0]).attr("y1",this._from.at[1]).attr("x2",this._to.at[0]).attr("y2",this._to.at[1]).attr("stroke",this._from.color)}move(t=1e3){this._from&&this._to&&this.item.transition().duration(t).attr("x1",this._from.at[0]).attr("y1",this._from.at[1]).attr("x2",this._to.at[0]).attr("y2",this._to.at[1])}remove(){this.item.remove(),this._from&&this._from.removeBind(this),this._from=null,this._to&&this._to.removeBind(this),this._to=null,this._remove_listener&&this._remove_listener(this)}setRemoveListener(t){this._remove_listener=t}}export class DataConvexHull{constructor(t,e){this._svg=t,this.item=t.append("polygon"),this._points=e,this._color=null,this.display()}get color(){return this._color||this._points[0].color}set color(t){this._color=t,this.display()}_argmin(t,e){return 0===t.length?-1:(t=e?t.map(e):t).indexOf(Math.min(...t))}_convexPoints(){if(this._points.length<=3)return this._points;let t=[].concat(this._points),e=this._argmin(t,(t=>t.at[1]));const i=t.splice(e,1)[0];t.sort(((t,e)=>{let s=t.vector.sub(i.vector),r=e.vector.sub(i.vector);return s.value[0]/s.length-r.value[0]/r.length}));let s=[i];for(let e=0;e=3;){let r=s.length;const o=s[r-1].vector.sub(s[r-2].vector).value,a=t[e].vector.sub(s[r-2].vector).value,h=i.vector.sub(s[r-2].vector).value;if((o[0]*h[1]-o[1]*h[0])*(o[0]*a[1]-o[1]*a[0])>0)break;s.pop()}s.push(t[e])}return s}display(){let t=this._convexPoints().reduce(((t,e)=>t+e.at[0]+","+e.at[1]+" "),"");this.item.attr("points",t).attr("stroke",this.color).attr("fill",this.color).attr("opacity",.5)}remove(){this.item.remove()}}class DataMap{constructor(){this._data=[],this._size=[0,0]}get rows(){return this._size[0]}get cols(){return this._size[1]}at(t,e){return t<0||!this._data[t]||e<0?void 0:this._data[t][e]}set(t,e,i){this._data[t]||(this._data[t]=[]),this._data[t][e]=i,this._size[0]=Math.max(this._size[0],t+1),this._size[1]=Math.max(this._size[1],e+1)}}export class DataHulls{constructor(t,e,i,s=!1,r=null){this._svg=d3.select(t),this._categories=e,this._tileSize=i,Array.isArray(this._tileSize)||(this._tileSize=[this._tileSize,this._tileSize]),this._use_canvas=s,this._mousemove=r,this.display()}display(){if(this._use_canvas){const t=document.querySelector("#plot-area svg"),e=document.createElement("canvas");e.width=t.getBoundingClientRect().width,e.height=t.getBoundingClientRect().height;let i=e.getContext("2d");for(let t=0;t{const e=d3.pointer(t);this._mousemove&&this._mousemove(s._categories[Math.round(e[1]/s._tileSize)][Math.round(e[0]/s._tileSize)])}))}let t=new DataMap;for(let e=0;e0;){let[e,i]=h.pop();t.at(e,i)===r?(o.set(e,i,1),t.set(e,i,specialCategory.never),h.push([e-1,i]),h.push([e+1,i]),h.push([e,i-1]),h.push([e,i+1]),a.set(e,i,1!==o.at(e-1,i)&&t.at(e-1,i)!==r||1!==o.at(e+1,i)&&t.at(e+1,i)!==r||1!==o.at(e,i-1)&&t.at(e,i-1)!==r||1!==o.at(e,i+1)&&t.at(e,i+1)!==r)):void 0===t.at(e,i)&&null===r&&(l=!0)}if(l)continue;let n=[[i,s]],c=i,u=s+1;const _=t.rows*t.cols;let g=0,d="r";for(;c!=i||u!=s;){let t=o.at(c-1,u-1),i=o.at(c-1,u),s=o.at(c,u-1),r=o.at(c,u);if(i&&t&&s&&r){e.push([c,u]);break}if(i&&t&&s)n.push([c,u]),d="b";else if(t&&s&&r)n.push([c,u]),d="r";else if(s&&r&&i)n.push([c,u]),d="t";else if(r&&i&&t)n.push([c,u]),d="l";else if(i&&t)d="l";else if(t&&s)d="b";else if(s&&r)d="r";else if(r&&i)d="t";else if(i&&s)n.push([c,u]),"l"===d?d="t":"r"===d?d="b":e.push([c,u]);else if(t&&r)n.push([c,u]),"t"===d?d="r":"b"===d?d="l":e.push([c,u]);else if(i)n.push([c,u]),d="t";else if(t)n.push([c,u]),d="l";else if(s)n.push([c,u]),d="b";else{if(!r){e.push([c,u]);break}n.push([c,u]),d="r"}if("r"===d?u+=1:"l"===d?u-=1:"b"===d?c+=1:"t"===d&&(c-=1),g+=1,g>=_){e.push([c,u]);break}}this._svg.append("polygon").attr("points",n.reduce(((t,e)=>t+e[1]*this._tileSize[0]+","+e[0]*this._tileSize[1]+" "),"")).attr("fill",null===r?"white":getCategoryColor(r))}if(e.length>0){let t="";e.length>100?(t="[",t+=e.slice(0,50).map(JSON.stringify).join(","),t+=",...,",t+=e.slice(-50).map(JSON.stringify).join(","),t+="]"):t=JSON.stringify(e),console.log("invalid loop condition at "+t)}}} \ No newline at end of file +export class BaseWorker{constructor(r,o){this._worker=new Worker(r,o)}_postMessage(r){const o=new Promise((r=>{const o=e=>{this._worker.removeEventListener("message",o,!1),r(e)};this._worker.addEventListener("message",o,!1)}));return this._worker.postMessage(r),o}terminate(){this._worker.terminate()}}const rgb=(r,o,e)=>({r:r,g:o,b:e,toString:()=>`rgb(${r}, ${o}, ${e})`}),categoryColors={"-2":rgb(255,0,0),"-1":rgb(255,255,255),0:rgb(0,0,0)};export const specialCategory={error:-2,errorRate:r=>-1-r,dummy:-2,density:r=>-1+r,never:-3};export const getCategoryColor=function(r){if(isNaN(r))return categoryColors[0];if(!Number.isInteger(r)){let o=getCategoryColor(Math.floor(r)),e=getCategoryColor(Math.ceil(r)),t=r-Math.floor(r);return rgb(Math.round(o.r+(e.r-o.r)*t),Math.round(o.g+(e.g-o.g)*t),Math.round(o.b+(e.b-o.b)*t))}if(!categoryColors[r%=1e3]){let o=0;for(;;){o+=1;const e=[Math.random(),Math.random(),Math.random()];if(e.every((r=>r>.8)))continue;let t=1/0;for(const o of Object.keys(categoryColors)){if(+o<0||Math.abs(+o-r)>10)continue;const a=(e[0]-categoryColors[o].r/256)**2+(e[1]-categoryColors[o].g/256)**2+(e[2]-categoryColors[o].b/256)**2;a{document.querySelector("svg .grouping").remove()};const t=d3.select(e.svg),l=new Controller(e);let n=null,a=null,i=null;t.insert("g",":first-child").attr("class","grouping");const r=l=>{let n=[];const i=d.value;let r=1;const o=[];a.getClusters(i).forEach((t=>{if(t.size>1){let a=[];const i=[t];for(;i.length>0;){const e=i.pop();e.size>1?(e.line||(e.line=l(e.children[0],e.children[1])),a=a.concat(e.line)):e.children||(o[e.index]=r),e.children&&i.push(...e.children)}a=a.map((t=>({path:t.map((t=>e._renderer[0].toPoint(t))),color:getCategoryColor(r)}))),n=n.concat(a)}else o[t.index]=r;r+=t.size})),e.trainResult=o,t.selectAll(".grouping path").remove(),t.select(".grouping").selectAll("path").data(n).enter().append("path").attr("d",(e=>(e=>{let t="";for(let l=0;le.color))},o=function(){t.selectAll(".grouping polygon").remove();const l=d.value;let n=1;const i=[];a.getClusters(l).forEach((l=>{if(l.size>1){const a=[l];for(;a.length>0;){const e=a.pop();e.poly?e.poly.remove():e.children||(i[e.index]=n),e.children&&a.push(...e.children)}l.poly=new DataConvexHull(t.select(".grouping"),l.leafs.map((t=>e._renderer[0].points[t.index]))),l.poly.color=getCategoryColor(n)}else i[l.index]=n;n+=l.size})),e.trainResult=i},s={"Complete Linkage":{class:CompleteLinkageAgglomerativeClustering,plot:()=>{r(((e,t)=>{const l=e.leafs,n=t.leafs;let a=l.map((e=>[e,n[argmax(n,(t=>e.distances[t.index]))]])),i=a[argmax(a,(e=>e[0].distances[e[1].index]))];return[[i[0].point,i[1].point]]}))}},"Single Linkage":{class:SingleLinkageAgglomerativeClustering,plot:()=>{r(((e,t)=>{const l=e.leafs,n=t.leafs;let a=l.map((e=>[e,n[argmin(n,(t=>e.distances[t.index]))]])),i=a[argmin(a,(e=>e[0].distances[e[1].index]))];return[[i[0].point,i[1].point]]}))}},"Group Average":{class:GroupAverageAgglomerativeClustering,plot:()=>o()},"Ward's":{class:WardsAgglomerativeClustering,plot:()=>o()},Centroid:{class:CentroidAgglomerativeClustering,plot:()=>o()},"Weighted Average":{class:WeightedAverageAgglomerativeClustering,plot:()=>o()},Median:{class:MedianAgglomerativeClustering,plot:()=>o()}},g=l.select(["Complete Linkage","Single Linkage","Group Average","Ward's","Centroid","Weighted Average","Median"]).on("change",(()=>{n=s[g.value].class,i=s[g.value].plot}));n=s["Complete Linkage"].class,i=s["Complete Linkage"].plot;const c=l.select(["euclid","manhattan","chebyshev"]);l.input.button("Initialize").on("click",(()=>{n&&(a=new n(c.value),a.fit(e.trainInput),u.element.max=e.datas.length,u.element.value=10,u.element.disabled=!1,d.element.max=e.datas.length,d.element.value=10,d.element.disabled=!1,t.selectAll("path").remove(),t.selectAll(".grouping *").remove(),i())}));const u=l.input.number({label:"Cluster #",min:1,max:1,value:1,disabled:"disabled"}).on("change",(()=>{d.value=u.value,i()})),d=l.input.range({min:1,disabled:"disabled"}).on("change",(()=>{u.value=d.value,i()})).on("input",(()=>{u.value=d.value}))} \ No newline at end of file +import{CompleteLinkageAgglomerativeClustering,SingleLinkageAgglomerativeClustering,GroupAverageAgglomerativeClustering,WardsAgglomerativeClustering,CentroidAgglomerativeClustering,WeightedAverageAgglomerativeClustering,MedianAgglomerativeClustering}from"../../lib/model/agglomerative.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";import{DataConvexHull}from"../renderer/util/figure.js";const argmin=function(e,t){return 0===e.length?-1:(e=t?e.map(t):e).indexOf(Math.min(...e))},argmax=function(e,t){return 0===e.length?-1:(e=t?e.map(t):e).indexOf(Math.max(...e))};export default function(e){e.setting.ml.usage='Click and add data point. Next, select distance type and click "Initialize". Finally, select cluster number.',e.setting.terminate=()=>{document.querySelector("svg .grouping").remove()};const t=e.svg,l=e=>{let t="";for(let l=0;l{let n=[];const a=p.value;let i=1;const s=[];r.getClusters(a).forEach((l=>{if(l.size>1){let a=[];const r=[l];for(;r.length>0;){const e=r.pop();e.size>1?(e.line||(e.line=t(e.children[0],e.children[1])),a=a.concat(e.line)):e.children||(s[e.index]=i),e.children&&r.push(...e.children)}a=a.map((t=>({path:t.map((t=>e._renderer[0].toPoint(t))),color:getCategoryColor(i)}))),n=n.concat(a)}else s[l.index]=i;i+=l.size})),e.trainResult=s,o.querySelectorAll("path").forEach((e=>e.remove()));for(const e of n){const t=document.createElementNS("http://www.w3.org/2000/svg","path");t.setAttribute("d",l(e.path)),t.setAttribute("stroke",e.color),o.append(t)}},g=function(){o.querySelectorAll("polygon").forEach((e=>e.remove()));const t=p.value;let l=1;const n=[];r.getClusters(t).forEach((t=>{if(t.size>1){const a=[t];for(;a.length>0;){const e=a.pop();e.poly?e.poly.remove():e.children||(n[e.index]=l),e.children&&a.push(...e.children)}t.poly=new DataConvexHull(o,t.leafs.map((t=>e._renderer[0].points[t.index]))),t.poly.color=getCategoryColor(l)}else n[t.index]=l;l+=t.size})),e.trainResult=n},c={"Complete Linkage":{class:CompleteLinkageAgglomerativeClustering,plot:()=>{s(((e,t)=>{const l=e.leafs,n=t.leafs;let a=l.map((e=>[e,n[argmax(n,(t=>e.distances[t.index]))]])),r=a[argmax(a,(e=>e[0].distances[e[1].index]))];return[[r[0].point,r[1].point]]}))}},"Single Linkage":{class:SingleLinkageAgglomerativeClustering,plot:()=>{s(((e,t)=>{const l=e.leafs,n=t.leafs;let a=l.map((e=>[e,n[argmin(n,(t=>e.distances[t.index]))]])),r=a[argmin(a,(e=>e[0].distances[e[1].index]))];return[[r[0].point,r[1].point]]}))}},"Group Average":{class:GroupAverageAgglomerativeClustering,plot:()=>g()},"Ward's":{class:WardsAgglomerativeClustering,plot:()=>g()},Centroid:{class:CentroidAgglomerativeClustering,plot:()=>g()},"Weighted Average":{class:WeightedAverageAgglomerativeClustering,plot:()=>g()},Median:{class:MedianAgglomerativeClustering,plot:()=>g()}},u=n.select(["Complete Linkage","Single Linkage","Group Average","Ward's","Centroid","Weighted Average","Median"]).on("change",(()=>{a=c[u.value].class,i=c[u.value].plot}));a=c["Complete Linkage"].class,i=c["Complete Linkage"].plot;const d=n.select(["euclid","manhattan","chebyshev"]);n.input.button("Initialize").on("click",(()=>{a&&(r=new a(d.value),r.fit(e.trainInput),m.element.max=e.datas.length,m.element.value=10,m.element.disabled=!1,p.element.max=e.datas.length,p.element.value=10,p.element.disabled=!1,t.querySelectorAll("path").forEach((e=>e.remove())),o.replaceChildren(),i())}));const m=n.input.number({label:"Cluster #",min:1,max:1,value:1,disabled:"disabled"}).on("change",(()=>{p.value=m.value,i()})),p=n.input.range({min:1,disabled:"disabled"}).on("change",(()=>{m.value=p.value,i()})).on("input",(()=>{m.value=p.value}))} \ No newline at end of file diff --git a/js/view/dbscan.js b/js/view/dbscan.js index 6fb5e46e..0cce9987 100644 --- a/js/view/dbscan.js +++ b/js/view/dbscan.js @@ -1 +1 @@ -import DBSCAN from"../../lib/model/dbscan.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";export default function(t){t.setting.ml.usage='Click and add data point. Then, click "Fit" button.',t.setting.ml.reference={title:"DBSCAN (Wikipedia)",url:"https://en.wikipedia.org/wiki/DBSCAN"};const e=new Controller(t),a=d3.select(t.svg);a.insert("g",":first-child").attr("class","range").attr("opacity",.4);const l=()=>{a.selectAll(".range *").remove();const e=new DBSCAN(n.value,i.value,r.value).predict(t.trainInput);t.trainResult=e.map((t=>t+1)),o.value=new Set(e).size;const l=t._renderer[0].scale[0];"euclid"===r.value?a.select(".range").selectAll("circle").data(t.trainInput).enter().append("circle").attr("cx",(t=>t[0]*l)).attr("cy",(t=>t[1]*l)).attr("r",n.value*l).attr("fill-opacity",0).attr("stroke",((t,a)=>getCategoryColor(e[a]+1))):"manhattan"===r.value?a.select(".range").selectAll("polygon").data(t.trainInput).enter().append("polygon").attr("points",(t=>{const e=t[0]*l,a=t[1]*l,r=n.value*l;return`${e-r},${a} ${e},${a-r} ${e+r},${a} ${e},${a+r}`})).attr("fill-opacity",0).attr("stroke",((t,a)=>getCategoryColor(e[a]+1))):"chebyshev"===r.value&&a.select(".range").selectAll("rect").data(t.trainInput).enter().append("rect").attr("x",(t=>(t[0]-n.value)*l)).attr("y",(t=>(t[1]-n.value)*l)).attr("width",2*n.value*l).attr("height",2*n.value*l).attr("fill-opacity",0).attr("stroke",((t,a)=>getCategoryColor(e[a]+1)))},r=e.select(["euclid","manhattan","chebyshev"]).on("change",l),n=e.input.number({label:"eps",min:.01,max:10,step:.01,value:.05}).on("change",l),i=e.input.number({label:"min pts",min:2,max:1e3,value:5}).on("change",l);e.input.button("Fit").on("click",l);const o=e.text({label:" Clusters: "});t.setting.terminate=()=>{a.select(".range").remove()}} \ No newline at end of file +import DBSCAN from"../../lib/model/dbscan.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";export default function(t){t.setting.ml.usage='Click and add data point. Then, click "Fit" button.',t.setting.ml.reference={title:"DBSCAN (Wikipedia)",url:"https://en.wikipedia.org/wiki/DBSCAN"};const e=new Controller(t),r=t.svg,i=document.createElementNS("http://www.w3.org/2000/svg","g");r.insertBefore(i,r.firstChild),i.classList.add("range"),i.setAttribute("opacity",.4);const l=()=>{i.replaceChildren();const e=new DBSCAN(o.value,a.value,n.value).predict(t.trainInput);t.trainResult=e.map((t=>t+1)),s.value=new Set(e).size;const r=t._renderer[0].scale[0],l=t.trainInput;if("euclid"===n.value)for(let t=0;t{i.remove()}} \ No newline at end of file diff --git a/js/view/decision_tree.js b/js/view/decision_tree.js index 94f4908c..6be9bd96 100644 --- a/js/view/decision_tree.js +++ b/js/view/decision_tree.js @@ -1 +1 @@ -import Matrix from"../../lib/util/matrix.js";import{DecisionTreeClassifier,DecisionTreeRegression}from"../../lib/model/decision_tree.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";class DecisionTreePlotter{constructor(t){this._platform=t,this._mode=t.task,this._svg=d3.select(t.svg),this._r=null,this._lineEdge=[]}remove(){this._svg.select(".separation").remove()}plot(t){if(this._svg.select(".separation").remove(),0!==this._platform.datas.length&&(1===this._platform.datas.dimension?this._r=this._svg.insert("g").attr("class","separation"):this._r=this._svg.insert("g",":first-child").attr("class","separation").attr("opacity",.5),this._lineEdge=[],this._dispRange(t._tree),1===this._platform.datas.dimension)){const t=t=>{let e="";for(let i=0;i{t>s&&(s=t,r=e)})):r=t.value,1===this._platform.datas.dimension){const t=this._platform._renderer[0].toPoint([e[0][0],r]),i=this._platform._renderer[0].toPoint([e[0][1],r]);this._lineEdge.push(t),this._lineEdge.push(i)}else{const t=this._platform._renderer[0].toPoint([e[0][0],e[1][0]]),s=this._platform._renderer[0].toPoint([e[0][1],e[1][1]]);i.append("rect").attr("x",t[0]).attr("y",t[1]).attr("width",s[0]-t[0]).attr("height",s[1]-t[1]).attr("fill",getCategoryColor(r))}}else t.children.forEach(((i,r)=>{let s=[[].concat(e[0]),[].concat(e[1])],o=0===r?1:0;s[t.feature][o]=t.threshold,this._dispRange(i,s)}))}}export default function(t){t.setting.ml.usage='Click and add data point. Next, click "Initialize". Finally, click "Separate".',t.setting.ml.reference={title:"Decision tree (Wikipedia)",url:"https://en.wikipedia.org/wiki/Decision_tree"};const e=new Controller(t),i=t.task,r=new DecisionTreePlotter(t);let s=null;const o=function(){if("FS"===t.task){const e=s.importance().map(((t,e)=>[t,e]));e.sort(((t,e)=>e[0]-t[0]));const i=t.dimension,r=e.map((t=>t[1])).slice(0,i),o=Matrix.fromArray(t.trainInput);t.trainResult=o.col(r).toArray()}else if(t.datas.dimension<=2)r.plot(s);else{let e=s.predict(t.testInput(2));t.testResult(e)}t.evaluate(((t,e)=>{e(s.predict(t))}))},n="CF"===i?["CART","ID3"]:["CART"],a=e.select(n);e.input.button("Initialize").on("click",(()=>{s="CF"===i?new DecisionTreeClassifier(a.value):new DecisionTreeRegression,s.init(t.trainInput,t.trainOutput.map((t=>t[0]))),o(),l.value=s.depth})),e.input.button("Separate").on("click",(()=>{s&&(s.fit(),o(),l.value=s.depth)}));const l=e.text("0");e.text(" depth "),t.setting.terminate=()=>{r.remove()}} \ No newline at end of file +import Matrix from"../../lib/util/matrix.js";import{DecisionTreeClassifier,DecisionTreeRegression}from"../../lib/model/decision_tree.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";class DecisionTreePlotter{constructor(t){this._platform=t,this._mode=t.task,this._svg=t.svg,this._r=null,this._lineEdge=[]}remove(){this._svg.querySelector(".separation")?.remove()}plot(t){if(this._svg.querySelector(".separation")?.remove(),0!==this._platform.datas.length&&(this._r=document.createElementNS("http://www.w3.org/2000/svg","g"),this._r.classList.add("separation"),1===this._platform.datas.dimension?this._svg.append(this._r):(this._svg.insertBefore(this._r,this._svg.firstChild),this._r.setAttribute("opacity",.5)),this._lineEdge=[],this._dispRange(t._tree),1===this._platform.datas.dimension)){const t=t=>{let e="";for(let i=0;i{t>r&&(r=t,i=e)})):i=t.value,1===this._platform.datas.dimension){const t=this._platform._renderer[0].toPoint([e[0][0],i]),r=this._platform._renderer[0].toPoint([e[0][1],i]);this._lineEdge.push(t),this._lineEdge.push(r)}else{const t=this._platform._renderer[0].toPoint([e[0][0],e[1][0]]),r=this._platform._renderer[0].toPoint([e[0][1],e[1][1]]),s=document.createElementNS("http://www.w3.org/2000/svg","rect");s.setAttribute("x",t[0]),s.setAttribute("y",t[1]),s.setAttribute("width",r[0]-t[0]),s.setAttribute("height",r[1]-t[1]),s.setAttribute("fill",getCategoryColor(i)),this._r.append(s)}}else t.children.forEach(((i,r)=>{let s=[[].concat(e[0]),[].concat(e[1])],o=0===r?1:0;s[t.feature][o]=t.threshold,this._dispRange(i,s)}))}}export default function(t){t.setting.ml.usage='Click and add data point. Next, click "Initialize". Finally, click "Separate".',t.setting.ml.reference={title:"Decision tree (Wikipedia)",url:"https://en.wikipedia.org/wiki/Decision_tree"};const e=new Controller(t),i=t.task,r=new DecisionTreePlotter(t);let s=null;const o=function(){if("FS"===t.task){const e=s.importance().map(((t,e)=>[t,e]));e.sort(((t,e)=>e[0]-t[0]));const i=t.dimension,r=e.map((t=>t[1])).slice(0,i),o=Matrix.fromArray(t.trainInput);t.trainResult=o.col(r).toArray()}else if(t.datas.dimension<=2)r.plot(s);else{let e=s.predict(t.testInput(2));t.testResult(e)}t.evaluate(((t,e)=>{e(s.predict(t))}))},n="CF"===i?["CART","ID3"]:["CART"],a=e.select(n);e.input.button("Initialize").on("click",(()=>{s="CF"===i?new DecisionTreeClassifier(a.value):new DecisionTreeRegression,s.init(t.trainInput,t.trainOutput.map((t=>t[0]))),o(),l.value=s.depth})),e.input.button("Separate").on("click",(()=>{s&&(s.fit(),o(),l.value=s.depth)}));const l=e.text("0");e.text(" depth "),t.setting.terminate=()=>{r.remove()}} \ No newline at end of file diff --git a/js/view/gmm.js b/js/view/gmm.js index 4f3bc138..5db56b93 100644 --- a/js/view/gmm.js +++ b/js/view/gmm.js @@ -1 +1 @@ -import Matrix from"../../lib/util/matrix.js";import{GMM,SemiSupervisedGMM,GMR}from"../../lib/model/gmm.js";import Controller from"../controller.js";import{specialCategory,getCategoryColor}from"../utils.js";class GMMPlotter{constructor(t,e,i=!1){this._r=d3.select(t).append("g").attr("class","centroids2"),this._model=e,this._size=0,this._circle=[],this._grayscale=i,this._duration=200}terminate(){this._r.remove()}_set_el_attr(t,e){if(!this._model._m[e])return;const i=this._model._m[e].value,r=this._model._s[e].value,a=(r[0]+r[3]+Math.sqrt((r[0]-r[3])**2+4*r[1]**2))/2,s=(r[0]+r[3]-Math.sqrt((r[0]-r[3])**2+4*r[1]**2))/2;let n=360*Math.atan((a-r[0])/r[1])/(2*Math.PI);isNaN(n)&&(n=0),t.attr("rx",2.146*Math.sqrt(a)*1e3).attr("ry",2.146*Math.sqrt(s)*1e3).attr("transform","translate("+1e3*i[0]+","+1e3*i[1]+") rotate("+n+")")}add(t){this._size++;const e=this._r.append("ellipse").attr("cx",0).attr("cy",0).attr("stroke",this._grayscale?"gray":getCategoryColor(t||this._size)).attr("stroke-width",2).attr("fill-opacity",0);this._set_el_attr(e,this._size-1),this._circle.push(e)}clear(){this._circle.forEach((t=>t.remove())),this._circle=[],this._size=0}move(){this._circle.forEach(((t,e)=>{this._set_el_attr(t.transition().duration(this._duration),e)}))}}export default function(t){t.setting.ml.usage='Click and add data point. Finally, click "Step" button repeatedly.',t.setting.ml.reference={title:"Mixture model (Wikipedia)",url:"https://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model"};const e=t.svg,i=t.task,r=new Controller(t),a="CT"!==i&&"SC"!==i&&"RG"!==i;let s=new GMM;"SC"===i?s=new SemiSupervisedGMM:"RG"===i&&(s=new GMR);const n=new GMMPlotter(e,s,a),l=(e,r)=>{if("AD"===i){e&&s.fit(t.trainInput);const i=s.probability(t.trainInput).map((t=>1-t.reduce(((t,e)=>t*Math.exp(-e)),1)1-t.reduce(((t,e)=>t*Math.exp(-e)),1)Math.max(...t))),r=Math.min(...i),a=Math.max(...i);t.testResult(i.map((t=>specialCategory.density((t-r)/(a-r)))))}else if("SC"===i){e&&s.fit(t.trainInput,t.trainOutput.map((t=>t[0]))),t.trainResult=s.predict(t.trainInput);const i=s.predict(t.testInput(4));t.testResult(i)}else if("GR"===i){const i=t.trainInput;e&&s.fit(i);const r=[];if(s._k>0)for(let t=0;tt+1));"RG"===i||(n.move(),t.centroids(s._m.map((t=>t.value)),a?0:"SC"===i?s.categories:s._m.map(((t,e)=>e+1)),{duration:200})),u.value=s._k+" clusters"},o=r.stepLoopButtons();"SC"===i?o.init((()=>{s.clear(),s.init(t.trainInput,t.trainOutput.map((t=>t[0])));for(let t=0;t{s.add(),n.add(),l(!1)}));const u=r.text("0 clusters");let p=null;"AD"===i&&(p=r.input.number({label:" threshold = ",min:0,max:1,step:.1,value:.5}).on("change",(()=>l(!1)))),o.step((t=>{l(!0),setTimeout((()=>t&&t()),200)})),"SC"!==i&&r.input.button("Clear").on("click",(()=>{s&&s.clear(),n.clear(),u.value="0 clusters",t.init()})),t.setting.terminate=()=>{n.terminate()}} \ No newline at end of file +import Matrix from"../../lib/util/matrix.js";import{GMM,SemiSupervisedGMM,GMR}from"../../lib/model/gmm.js";import Controller from"../controller.js";import{specialCategory,getCategoryColor}from"../utils.js";class GMMPlotter{constructor(t,e,i=!1){this._r=document.createElementNS("http://www.w3.org/2000/svg","g"),t.append(this._r),this._model=e,this._size=0,this._circle=[],this._grayscale=i,this._duration=200}terminate(){this._r.remove()}_set_el_attr(t,e){if(!this._model._m[e])return;const i=this._model._m[e].value,r=this._model._s[e].value,s=(r[0]+r[3]+Math.sqrt((r[0]-r[3])**2+4*r[1]**2))/2,a=(r[0]+r[3]-Math.sqrt((r[0]-r[3])**2+4*r[1]**2))/2;let n=360*Math.atan((s-r[0])/r[1])/(2*Math.PI);isNaN(n)&&(n=0),t.setAttribute("rx",2.146*Math.sqrt(s)*1e3),t.setAttribute("ry",2.146*Math.sqrt(a)*1e3),t.setAttribute("transform","translate("+1e3*i[0]+","+1e3*i[1]+") rotate("+n+")")}add(t){this._size++;const e=document.createElementNS("http://www.w3.org/2000/svg","ellipse");e.setAttribute("cx",0),e.setAttribute("cy",0),e.setAttribute("stroke",this._grayscale?"gray":getCategoryColor(t||this._size)),e.setAttribute("stroke-width",2),e.setAttribute("fill-opacity",0),e.style.transitionDuration=this._duration+"ms",this._r.append(e),this._set_el_attr(e,this._size-1),this._circle.push(e)}clear(){this._circle.forEach((t=>t.remove())),this._circle=[],this._size=0}move(){this._circle.forEach(((t,e)=>{this._set_el_attr(t,e)}))}}export default function(t){t.setting.ml.usage='Click and add data point. Finally, click "Step" button repeatedly.',t.setting.ml.reference={title:"Mixture model (Wikipedia)",url:"https://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model"};const e=t.svg,i=t.task,r=new Controller(t),s="CT"!==i&&"SC"!==i&&"RG"!==i;let a=new GMM;"SC"===i?a=new SemiSupervisedGMM:"RG"===i&&(a=new GMR);const n=new GMMPlotter(e,a,s),l=(e,r)=>{if("AD"===i){e&&a.fit(t.trainInput);const i=a.probability(t.trainInput).map((t=>1-t.reduce(((t,e)=>t*Math.exp(-e)),1)1-t.reduce(((t,e)=>t*Math.exp(-e)),1)Math.max(...t))),r=Math.min(...i),s=Math.max(...i);t.testResult(i.map((t=>specialCategory.density((t-r)/(s-r)))))}else if("SC"===i){e&&a.fit(t.trainInput,t.trainOutput.map((t=>t[0]))),t.trainResult=a.predict(t.trainInput);const i=a.predict(t.testInput(4));t.testResult(i)}else if("GR"===i){const i=t.trainInput;e&&a.fit(i);const r=[];if(a._k>0)for(let t=0;tt+1));"RG"===i||(n.move(),t.centroids(a._m.map((t=>t.value)),s?0:"SC"===i?a.categories:a._m.map(((t,e)=>e+1)),{duration:200})),u.value=a._k+" clusters"},o=r.stepLoopButtons();"SC"===i?o.init((()=>{a.clear(),a.init(t.trainInput,t.trainOutput.map((t=>t[0])));for(let t=0;t{a.add(),n.add(),l(!1)}));const u=r.text("0 clusters");let p=null;"AD"===i&&(p=r.input.number({label:" threshold = ",min:0,max:1,step:.1,value:.5}).on("change",(()=>l(!1)))),o.step((t=>{l(!0),setTimeout((()=>t&&t()),200)})),"SC"!==i&&r.input.button("Clear").on("click",(()=>{a&&a.clear(),n.clear(),u.value="0 clusters",t.init()})),t.setting.terminate=()=>{n.terminate()}} \ No newline at end of file diff --git a/js/view/mean_shift.js b/js/view/mean_shift.js index bb4461f7..9efdde99 100644 --- a/js/view/mean_shift.js +++ b/js/view/mean_shift.js @@ -1 +1 @@ -import MeanShift from"../../lib/model/mean_shift.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";export default function(t){t.setting.ml.usage='Click and add data point. Finally, click "Step" button repeatedly.',t.setting.ml.reference={title:"Mean shift (Wikipedia)",url:"https://en.wikipedia.org/wiki/Mean_shift"};const e=d3.select(t.svg).insert("g",":first-child").attr("class","centroids").attr("opacity",.8),r=new Controller(t);let a=[],i=new MeanShift(50,10);const n=()=>{const e=t._renderer[0].scale?.[0]??0,r=i.predict(l.value);t.trainResult=r.map((t=>t+1));for(let t=0;t{const r=t._renderer[0].scale?.[0]??0;i=new MeanShift(o.value);let l=t.trainInput;"SG"===t.task&&(l=l.flat()),i.init(l),"SG"!==t.task&&r>0&&(a.forEach((t=>t.remove())),a=t._renderer[0].points.map((t=>e.append("circle").attr("cx",t.at[0]*r).attr("cy",t.at[1]*r).attr("r",i.h*r).attr("stroke","black").attr("fill-opacity",0).attr("stroke-opacity",.5)))),n(),s.value=i.categories})).step((t=>{null!==i&&(i.fit(),n(),s.value=i.categories,t&&t())}));const l=r.input.number({min:0,max:10,step:.01,value:.01}).on("change",(()=>{n(),s.value=i.categories})),s=r.text({label:" clusters ",value:0});t.setting.terminate=()=>{e.remove()}} \ No newline at end of file +import MeanShift from"../../lib/model/mean_shift.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";export default function(t){t.setting.ml.usage='Click and add data point. Finally, click "Step" button repeatedly.',t.setting.ml.reference={title:"Mean shift (Wikipedia)",url:"https://en.wikipedia.org/wiki/Mean_shift"};const e=document.createElementNS("http://www.w3.org/2000/svg","g");t.svg.insertBefore(e,t.svg.firstChild),e.classList.add("centroids"),e.setAttribute("opacity",.8);const r=new Controller(t);let i=[],n=new MeanShift(50,10);const s=()=>{const e=t._renderer[0].scale?.[0]??0,r=n.predict(a.value);t.trainResult=r.map((t=>t+1));for(let t=0;t{const r=t._renderer[0].scale?.[0]??0;n=new MeanShift(o.value);let a=t.trainInput;"SG"===t.task&&(a=a.flat()),n.init(a),"SG"!==t.task&&r>0&&(i.forEach((t=>t.remove())),i=t._renderer[0].points.map((t=>{const i=document.createElementNS("http://www.w3.org/2000/svg","circle");return i.setAttribute("cx",t.at[0]*r),i.setAttribute("cy",t.at[1]*r),i.setAttribute("r",n.h*r),i.setAttribute("stroke","black"),i.setAttribute("fill-opacity",0),i.setAttribute("stroke-opacity",.5),e.append(i),i}))),s(),l.value=n.categories})).step((t=>{null!==n&&(n.fit(),s(),l.value=n.categories,t&&t())}));const a=r.input.number({min:0,max:10,step:.01,value:.01}).on("change",(()=>{s(),l.value=n.categories})),l=r.text({label:" clusters ",value:0});t.setting.terminate=()=>{e.remove()}} \ No newline at end of file diff --git a/js/view/pca.js b/js/view/pca.js index 075447ca..fe06f0ad 100644 --- a/js/view/pca.js +++ b/js/view/pca.js @@ -1 +1 @@ -import{PCA,DualPCA,KernelPCA,AnomalyPCA}from"../../lib/model/pca.js";var dispPCA=function(t,e){const n=()=>{if("DR"===e.task){const n=e.dimension,a=t.select("[name=kernel]").property("value"),p=t.select("[name=type]").property("value");let l;if(""===p)l=new PCA;else if("dual"===p)l=new DualPCA;else{const e=[];"polynomial"===a?e.push(+t.select("[name=poly_d]").property("value")):"gaussian"===a&&e.push(+t.select("[name=sigma]").property("value")),l=new KernelPCA(a,e)}l.fit(e.trainInput);const s=l.predict(e.trainInput,n);e.trainResult=s}else{const n=new AnomalyPCA;n.fit(e.trainInput);const a=+t.select("[name=threshold]").property("value"),p=n.predict(e.trainInput);e.trainResult=p.map((t=>t>a));const l=n.predict(e.testInput(10));e.testResult(l.map((t=>t>a)))}};"AD"!==e.task&&t.append("select").attr("name","type").on("change",(function(){"kernel"===d3.select(this).property("value")?a.style("display","inline-block"):a.style("display","none")})).selectAll("option").data(["","dual","kernel"]).enter().append("option").attr("value",(t=>t)).text((t=>t));const a=t.append("span").style("display","none");a.append("select").attr("name","kernel").on("change",(function(){const t=d3.select(this);p.style("display","none"),l.style("display","none"),"polynomial"===t.property("value")?p.style("display","inline-block"):"gaussian"===t.property("value")&&l.style("display","inline-block")})).selectAll("option").data(["gaussian","polynomial"]).enter().append("option").attr("value",(t=>t)).text((t=>t));const p=a.append("span").style("display","none");p.append("span").text(" d = ").append("input").attr("type","number").attr("name","poly_d").attr("value",2).attr("min",1).attr("max",10);const l=a.append("span");l.append("span").text(" sigma = ").append("input").attr("type","number").attr("name","sigma").attr("value",1).attr("min",0).attr("max",10).attr("step",.1),"AD"===e.task&&(t.append("span").text(" threshold = "),t.append("input").attr("type","number").attr("name","threshold").attr("value",.1).attr("min",0).attr("max",10).attr("step",.01).on("change",n)),t.append("input").attr("type","button").attr("value","Fit").on("click",n)};export default function(t){t.setting.ml.usage='Click and add data point. Next, click "Fit" button.',dispPCA(t.setting.ml.configElement,t)} \ No newline at end of file +import{PCA,DualPCA,KernelPCA,AnomalyPCA}from"../../lib/model/pca.js";import Controller from"../controller.js";export default function(e){e.setting.ml.usage='Click and add data point. Next, click "Fit" button.';const n=new Controller(e),l=()=>{if("DR"===e.task){const n=e.dimension;let l;if(""===t.value)l=new PCA;else if("dual"===t.value)l=new DualPCA;else{const e=[];"polynomial"===s.value?e.push(o.value):"gaussian"===s.value&&e.push(p.value),l=new KernelPCA(s.value,e)}l.fit(e.trainInput);const a=l.predict(e.trainInput,n);e.trainResult=a}else{const n=new AnomalyPCA;n.fit(e.trainInput);const l=m.value,t=n.predict(e.trainInput);e.trainResult=t.map((e=>e>l));const a=n.predict(e.testInput(10));e.testResult(a.map((e=>e>l)))}};let t=null;"AD"!==e.task&&(t=n.select(["","dual","kernel"]).on("change",(()=>{"kernel"===t.value?a.element.style.display="inline-block":a.element.style.display="none"})));const a=n.span();a.element.style.display="none";const s=a.select(["gaussian","polynomial"]).on("change",(function(){i.element.style.display="none",u.element.style.display="none","polynomial"===s.value?i.element.style.display="inline-block":"gaussian"===s.value&&(u.element.style.display="inline-block")})),i=a.span();i.element.style.display="none";const o=i.input.number({label:" d = ",value:2,min:1,max:10}),u=a.span(),p=u.input.number({label:" sigma = ",value:1,min:0,max:10,step:.1});let m=null;"AD"===e.task&&(m=n.input.number({label:" threshold = ",value:.1,min:0,max:10,step:.01}).on("change",l)),n.input.button("Fit").on("click",l)} \ No newline at end of file diff --git a/js/view/vbgmm.js b/js/view/vbgmm.js index fe35399f..22ea4943 100644 --- a/js/view/vbgmm.js +++ b/js/view/vbgmm.js @@ -1 +1 @@ -import VBGMM from"../../lib/model/vbgmm.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";class VBGMMPlotter{constructor(t,e){this._r=d3.select(t).append("g").attr("class","centroids2"),this._model=e,this._size=e._k,this._circle=[],this._rm=[],this._duration=200,this._scale=1e3;for(let t=0;t{this._rm[e]||this._set_el_attr(t.transition().duration(this._duration),e)}))}}export default function(t){t.setting.ml.usage='Click and add data point. Then, click "Fit" button.';const e=new Controller(t);let i=null,r=null;const s=e.input.number({label:" alpha ",min:0,max:10,value:.001}),a=e.input.number({label:" beta ",min:0,max:10,value:.001}),l=e.input.number({label:" k ",min:1,max:1e3,value:10});e.stepLoopButtons().init((()=>{i=null,r?.terminate(),r=null,o.value="0",t.init()})).step((e=>{i||(i=new VBGMM(s.value,a.value,l.value),i.init(t.trainInput)),i.fit();const n=i.predict(t.trainInput);t.trainResult=n.map((t=>t+1)),o.value=i.effectivity.reduce(((t,e)=>t+(e?1:0)),0),r||(r=new VBGMMPlotter(t.svg,i)),r.move();const c=i.effectivity,h=i.means.toArray().map(((t,e)=>[t,e])).filter(((t,e)=>c[e]));t.centroids(h.map((t=>t[0])),h.map((t=>t[1]+1)),{duration:200}),setTimeout((()=>{e&&e()}),200)})).epoch();const o=e.text({label:" Clusters: "});t.setting.terminate=()=>{r?.terminate()}} \ No newline at end of file +import VBGMM from"../../lib/model/vbgmm.js";import Controller from"../controller.js";import{getCategoryColor}from"../utils.js";class VBGMMPlotter{constructor(t,e){this._r=document.createElementNS("http://www.w3.org/2000/svg","g"),t.append(this._r),this._model=e,this._size=e._k,this._circle=[],this._rm=[],this._duration=200,this._scale=1e3;for(let t=0;t{this._rm[e]||this._set_el_attr(t,e)}))}}export default function(t){t.setting.ml.usage='Click and add data point. Then, click "Fit" button.';const e=new Controller(t);let i=null,s=null;const r=e.input.number({label:" alpha ",min:0,max:10,value:.001}),l=e.input.number({label:" beta ",min:0,max:10,value:.001}),a=e.input.number({label:" k ",min:1,max:1e3,value:10});e.stepLoopButtons().init((()=>{i=null,s?.terminate(),s=null,o.value="0",t.init()})).step((e=>{i||(i=new VBGMM(r.value,l.value,a.value),i.init(t.trainInput)),i.fit();const n=i.predict(t.trainInput);t.trainResult=n.map((t=>t+1)),o.value=i.effectivity.reduce(((t,e)=>t+(e?1:0)),0),s||(s=new VBGMMPlotter(t.svg,i)),s.move();const m=i.effectivity,u=i.means.toArray().map(((t,e)=>[t,e])).filter(((t,e)=>m[e]));t.centroids(u.map((t=>t[0])),u.map((t=>t[1]+1)),{duration:200}),setTimeout((()=>{e&&e()}),200)})).epoch();const o=e.text({label:" Clusters: "});t.setting.terminate=()=>{s?.terminate()}} \ No newline at end of file