-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtutorial_tensordb_cv_mnist_worker.py
executable file
·260 lines (207 loc) · 10.6 KB
/
tutorial_tensordb_cv_mnist_worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#! /usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
from datetime import datetime
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.db import TensorDB
from tensorlayer.layers import set_keep
import time
import shutil
import sys
def train_mlp(db, n_layers, lr, n_epochs):
X_train, y_train, X_val, y_val, X_test, y_test = load_mnist_data(db=db, shape=(-1, 784))
sess = tf.InteractiveSession()
# placeholder
x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
y_ = tf.placeholder(tf.int32, shape=[None, ], name='y_')
# MLP
network = tl.layers.InputLayer(x, name='input_layer')
for l in range(1, n_layers+1):
network = tl.layers.DropoutLayer(network, keep=0.8, name='drop{}'.format(l))
network = tl.layers.DenseLayer(network, n_units=800, act=tf.nn.relu, name='relu{}'.format(l))
network = tl.layers.DropoutLayer(network, keep=0.5, name='drop'.format(n_layers+1))
network = tl.layers.DenseLayer(network, n_units=10, act=tf.identity, name='output_layer')
y = network.outputs
# Prediction
y_op = tf.argmax(tf.nn.softmax(y), 1)
y_op = tf.to_int32(y_op)
# Loss
cost = tl.cost.cross_entropy(y, y_, name='cost')
# Accuracy
correct_prediction = tf.equal(y_op, y_)
acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# Train op
batch_size = 128
learning_rate = lr
print_freq = 5
params = network.all_params
train_op = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False).minimize(cost)
tl.layers.initialize_global_variables(sess)
network.print_params()
network.print_layers()
print(' learning_rate: %f' % learning_rate)
print(' batch_size: %d' % batch_size)
for epoch in range(n_epochs):
start_time = time.time()
for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train,
batch_size, shuffle=True):
feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update( network.all_drop )
sess.run(train_op, feed_dict=feed_dict)
if epoch + 1 == 1 or (epoch + 1) % print_freq == 0:
print("Epoch %d of %d took %fs" % (epoch + 1, n_epochs, time.time() - start_time))
dp_dict = tl.utils.dict_to_one( network.all_drop )
feed_dict = {x: X_train, y_: y_train}
feed_dict.update(dp_dict)
train_loss, train_acc = sess.run([cost, acc], feed_dict=feed_dict)
print(" train loss: %f" % train_loss)
print(" train acc: %f" % train_acc)
dp_dict = tl.utils.dict_to_one( network.all_drop )
feed_dict = {x: X_val, y_: y_val}
feed_dict.update(dp_dict)
valid_loss, valid_acc = sess.run([cost, acc], feed_dict=feed_dict)
print(" val loss: %f" % valid_loss)
print(" val acc: %f" % valid_acc)
db.train_log({'loss': np.asscalar(train_loss), 'acc': np.asscalar(train_acc), 'time': datetime.utcnow()})
db.valid_log({'loss': np.asscalar(valid_loss), 'acc': np.asscalar(valid_acc), 'time': datetime.utcnow()})
print('Evaluation')
dp_dict = tl.utils.dict_to_one(network.all_drop)
feed_dict = {x: X_test, y_: y_test}
feed_dict.update(dp_dict)
test_loss, test_acc = sess.run([cost, acc], feed_dict=feed_dict)
print(" test loss: %f" % test_loss)
print(" test acc: %f" % test_acc)
db.test_log({'loss': np.asscalar(test_loss), 'acc': np.asscalar(test_acc), 'time': datetime.utcnow()})
db.save_params(params=sess.run(network.all_params), args={'type': 'model_mlp'})
# In the end, close TensorFlow session.
sess.close()
tl.layers.clear_layers_name()
tf.reset_default_graph()
def train_cnn(db, n_cnn_layers, lr, n_epochs):
X_train, y_train, X_val, y_val, X_test, y_test = load_mnist_data(db=db, shape=(-1, 28, 28, 1))
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
y_ = tf.placeholder(tf.int32, shape=[None,])
# CNN
network = tl.layers.InputLayer(x, name='input_layer')
if n_cnn_layers < 1 or n_cnn_layers > 2:
raise Exception('Not yet support')
filter_sizes = [32, 64]
for l in range(n_cnn_layers):
network = tl.layers.Conv2d(network, n_filter=filter_sizes[l], filter_size=(5, 5), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='cnn{}'.format(l+1))
network = tl.layers.MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool_layer{}'.format(l+1))
network = tl.layers.FlattenLayer(network, name='flatten')
network = tl.layers.DropoutLayer(network, keep=0.5, name='drop1')
network = tl.layers.DenseLayer(network, n_units=256, act=tf.nn.relu, name='relu1')
network = tl.layers.DropoutLayer(network, keep=0.5, name='drop2')
network = tl.layers.DenseLayer(network, n_units=10, act=tf.identity, name='output')
y = network.outputs
# Prediction
y_op = tf.argmax(y, 1)
y_op = tf.to_int32(y_op)
# Loss
cost = tl.cost.cross_entropy(y, y_, 'cost')
# Accuracy
correct_prediction = tf.equal(y_op, y_)
acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# Train op
batch_size = 128
learning_rate = 0.0001
print_freq = 10
train_params = network.all_params
train_op = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False).minimize(cost, var_list=train_params)
tl.layers.initialize_global_variables(sess)
network.print_params()
network.print_layers()
print(' learning_rate: %f' % learning_rate)
print(' batch_size: %d' % batch_size)
for epoch in range(n_epochs):
start_time = time.time()
for X_train_a, y_train_a in tl.iterate.minibatches(
X_train, y_train, batch_size, shuffle=True):
feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update( network.all_drop )
sess.run(train_op, feed_dict=feed_dict)
if epoch + 1 == 1 or (epoch + 1) % print_freq == 0:
print("Epoch %d of %d took %fs" % (epoch + 1, n_epochs, time.time() - start_time))
train_loss, train_acc, n_batch = 0.0, 0.0, 0
for X_train_a, y_train_a in tl.iterate.minibatches(
X_train, y_train, batch_size, shuffle=True):
dp_dict = tl.utils.dict_to_one( network.all_drop )
feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update(dp_dict)
err, ac = sess.run([cost, acc], feed_dict=feed_dict)
train_loss += err; train_acc += ac; n_batch += 1
print(" train loss: %f" % (train_loss / n_batch))
print(" train acc: %f" % (train_acc / n_batch))
db.train_log({'loss': np.asscalar(train_loss / n_batch), 'acc': np.asscalar(train_acc / n_batch), 'time': datetime.utcnow()})
val_loss, val_acc, n_batch = 0.0, 0.0, 0
for X_val_a, y_val_a in tl.iterate.minibatches(
X_val, y_val, batch_size, shuffle=True):
dp_dict = tl.utils.dict_to_one( network.all_drop )
feed_dict = {x: X_val_a, y_: y_val_a}
feed_dict.update(dp_dict)
err, ac = sess.run([cost, acc], feed_dict=feed_dict)
val_loss += err; val_acc += ac; n_batch += 1
print(" val loss: %f" % (val_loss / n_batch))
print(" val acc: %f" % (val_acc / n_batch))
db.valid_log({'loss': np.asscalar(val_loss/n_batch), 'acc': np.asscalar(val_acc/n_batch), 'time': datetime.utcnow()})
print('Evaluation')
test_loss, test_acc, n_batch = 0, 0, 0
for X_test_a, y_test_a in tl.iterate.minibatches(
X_test, y_test, batch_size, shuffle=True):
dp_dict = tl.utils.dict_to_one( network.all_drop )
feed_dict = {x: X_test_a, y_: y_test_a}
feed_dict.update(dp_dict)
err, ac = sess.run([cost, acc], feed_dict=feed_dict)
test_loss += err
test_acc += ac
n_batch += 1
print(" test loss: %f" % (test_loss / n_batch))
print(" test acc: %f" % (test_acc / n_batch))
db.test_log({'loss': np.asscalar(test_loss / n_batch), 'acc': np.asscalar(test_acc / n_batch), 'time': datetime.utcnow()})
db.save_params(params=sess.run(network.all_params), args={'type': 'model_cnn'})
# In the end, close TensorFlow session.
sess.close()
tl.layers.clear_layers_name()
tf.reset_default_graph()
def load_mnist_data(db, shape=(-1, 28, 28, 1)):
data, f_id = db.find_one_params(args={'type': 'mnist_dataset'})
if not data:
raise Exception("MNIST dataset not found !!")
X_train, y_train, X_val, y_val, X_test, y_test = data
X_train = np.asarray(X_train, dtype=np.float32)
y_train = np.asarray(y_train, dtype=np.int32)
X_val = np.asarray(X_val, dtype=np.float32)
y_val = np.asarray(y_val, dtype=np.int32)
X_test = np.asarray(X_test, dtype=np.float32)
y_test = np.asarray(y_test, dtype=np.int32)
X_train = X_train.reshape(shape)
X_val = X_val.reshape(shape)
X_test = X_test.reshape(shape)
print('X_train.shape', X_train.shape)
print('y_train.shape', y_train.shape)
print('X_val.shape', X_val.shape)
print('y_val.shape', y_val.shape)
print('X_test.shape', X_test.shape)
print('y_test.shape', y_test.shape)
print('X %s y %s' % (X_test.dtype, y_test.dtype))
return X_train, y_train, X_val, y_val, X_test, y_test
def worker(job_id):
# This is to initialize the connection to your MondonDB server
# Note: make sure your MongoDB is reachable before changing this line
db = TensorDB(ip='IP_ADDRESS_OR_YOUR_MONGODB', port=27017, db_name='DATABASE_NAME', user_name=None, password=None, studyID='ANY_ID (e.g., mnist)')
from bson.objectid import ObjectId
job = db.find_one_job(args={'_id': ObjectId(job_id)})
if job['model'] == 'cnn':
train_cnn(db=db, n_cnn_layers=job['n_cnn_layers'], lr=job['lr'], n_epochs=job['n_epochs'])
elif job['model'] == 'mlp':
train_mlp(db=db, n_layers=job['n_layers'], lr=job['lr'], n_epochs=job['n_epochs'])
def main():
# worker(job_id='58dabd44376ffe2dfbd772de')
worker(job_id=sys.argv[1])
if __name__ == '__main__':
main()