-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtechwords.py
77 lines (57 loc) · 1.93 KB
/
techwords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import urllib.request
import matplotlib.pyplot as plt
from word_cloud import get_word_cloud
from nltk.corpus import wordnet as wn
from wordcloud import WordCloud
def gen_syn(word):
synonyms = []
x = (wn.synsets(word))
for syn in x:
for l in syn.lemmas():
synonyms.append(l.name())
x = set(synonyms)
return (x)
def count_words(words, string_s):
counts = {word: 0 for word in words}
for word in counts:
counts[word] = string_s.count(word)
return counts
def internal_generate_tech(query, num_results):
url_link = ('http://export.arxiv.org/api/query?search_query=all:'
+ query + '&start=0&max_results=' + str(num_results))
with urllib.request.urlopen(url_link) as url:
data = url.read()
data = data.decode("utf-8")
data = data.lower()
data = data.replace('\n',' ')
data = data.replace('$','')
syn_list = gen_syn(query)
for syn in syn_list:
data = data.replace(syn,'')
data = data.split('summary>')
s = ''
for i in range(len(data) - 1):
data[i] = data[i].replace('<', '')
data[i] = data[i].replace('>', '')
data[i] = data[i].replace('/', '')
if (i % 2 == 1):
s += data[i] + '\n'
# Scientific terms frequencies
words = open('clean_list2.txt').readlines()
for i in range(len(words)):
words[i] = words[i].replace('\n','')
words[i] = ' ' + words[i] + ' '
counts = count_words(words, s)
for word in list(counts):
if(word == '' or counts[word] == 0):
counts.pop(word)
wordcloud = WordCloud().generate_from_frequencies(counts)
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
def generate_text_tech(query):
num_results = 1000
internal_generate_tech(query, num_results)
# get_word_cloud('papers.txt')
if __name__ == '__main__':
query = 'homeless'
generate_text_tech(query)