-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_fsspec.py
45 lines (37 loc) · 1.54 KB
/
read_fsspec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pyart
import fsspec
import xarray as xr
import xradar as xd
import boto3
import botocore
from botocore.client import Config
from datetime import datetime
def create_query(date, radar_site):
"""
Creates a query for listing IDEAM radar files stored in AWS bucket
:param date: date to be queried. e.g datetime(2021, 10, 3, 12). Datetime python object
:param radar_site: radar site e.g. Guaviare
:return: string with a
"""
prefix = f'l2_data/{date:%Y}/{date:%m}/{date:%d}/{radar_site}/{radar_site[:3].upper()}{date:%y%m%d}'
return prefix
def main():
str_bucket = 's3://s3-radaresideam/'
s3 = boto3.resource('s3',
config=Config(signature_version=botocore.UNSIGNED, user_agent_extra='Resource'))
bucket = s3.Bucket('s3-radaresideam')
query = create_query(date=datetime(2021, 10, 3, 12), radar_site='Guaviare')
radar_files = [f'{str_bucket}{i.key}' for i in bucket.objects.filter(Prefix=f"{query}")]
# using context manager for reading radar data from guaviare radar
of = pyart.io.prepare_for_read(radar_files[2], storage_options={'anon': True})
with of as f:
radar = pyart.io.read(f)
print(radar.range['meters_between_gates'])
f.close()
for idx, i in enumerate(radar_files[2:3]):
file = fsspec.open_local(f'simplecache::{i}', s3={'anon': True}, filecache={'cache_storage': '.'})
dtree = xd.io.open_iris_datatree(file)
ds = xr.open_dataset(file, group=1, engine="iris")
print('done')
if __name__ == "__main__":
main()