forked from krisztianlukacs/TrLearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
428 lines (327 loc) · 18.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import os
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
from mistralai import Mistral
from rich import print
from rich.console import Console
from rich.text import Text
console = Console()
class BookGenerator:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
self.model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
api_key = os.environ["MISTRAL_API_KEY"]
self.mistral_model = "mistral-large-latest"
self.client = Mistral(api_key=api_key)
# Paths to input and output files
self.toc_output_dir = 'output/toc'
self.content_output_dir = 'output/content'
self.input_book_json = 'input_book.json' # book title and keywords
self.book_data = self.read_json_from_file(self.input_book_json)
self.book_title = self.book_data['book_title']
self.book_keywords = self.book_data['keywords']
self.input_toc_json = 'toc_prompt.json' # table of contents
self.toc_data = self.read_json_from_file(self.input_toc_json)
self.toc_system_prompt = self.toc_data['toc_system_prompt']
self.toc_prompts = self.toc_data['toc_prompts']
self.book_prompt_json = 'book_prompt.json'
self.book_data = self.read_json_from_file(self.book_prompt_json)
self.book_content_system_prompt = self.book_data['book_content_system_prompt']
self.book_content_prompts = self.book_data['book_content_prompts']
self.content_quality_check_system_json = 'content_quality_check_system_prompt.json'
self.content_quality_check_data = self.read_json_from_file(self.content_quality_check_system_json)
self.content_quality_check_system_prompt = self.content_quality_check_data['content_quality_system_prompt']
self.h1_json = 'h1.json'
self.h2_json = 'h2.json'
self.h3_json = 'h3.json'
self.h4_json = 'h4.json'
console.print(f'Book title: {self.book_title}', style="red")
console.print(f'Book keywords: {self.book_keywords}', style="yellow")
console.print(f'TOC System JSON prompt: {self.toc_system_prompt}', style="purple")
console.print(f'TOC JSON prompts: {self.toc_prompts}', style="green")
def generate_table_of_contents(self):
"""Generate the table of contents as a hierarchical JSON structure."""
toc = {'title': self.book_title, 'headings': []}
print('\n' + '-' * 100 + '\n')
print('Generating TOC ...')
if not os.path.exists(self.toc_output_dir + '/' + self.h1_json):
# Generate H1 headings
h1_prompt = self.original_prompts['H1'].format(book_title=self.book_title, book_keywords=self.book_keywords)
#console.print(f'h1_prompt: {h1_prompt}', style="purple")
h1_response = self.call_mistral_model(h1_prompt)
h1_response = h1_response.replace("```json", "").replace("```", "").strip()
h1_response = h1_response.replace("\n", "").replace("\\", "")
print(f'h1_response: {h1_response}')
self.write_json_to_file(h1_response, self.h1_output_path)
h1_headings = json.loads(h1_response)['chapters']
print(f'h1_headings: {h1_headings}')
self.generate_h2_headings()
self.generate_h3_headings()
self.generate_h4_headings()
def generate_h2_headings(self):
if os.path.exists(self.toc_output_dir + '/' + self.h1_json):
console.print(f'h1_output_path already exists: {self.toc_output_dir + '/' + self.h1_json}', style="blue")
if os.path.exists(self.toc_output_dir + '/' + self.h2_json):
console.print(f'h2_output_path already exists: {self.toc_output_dir + '/' + self.h2_json}', style="blue")
else:
console.print(f'Generating H2 headings...', style="blue")
self.h1_response = json.loads(open(self.h1_output_path, 'r', encoding='utf-8').read())
key1 = list(self.h1_response.keys())[0]
self.h1_headings = self.h1_response[key1]
print(f'h1_headings: {self.h1_headings}')
toc = []
for h1 in self.h1_headings:
h1_dict = {'title': h1['title'], 'summary': h1['summary'], 'keywords': h1['keywords']}
# Generate H2 headings under H1
h2_prompt = self.original_prompts['H2'].format(
chapter_title=h1['title'],
keywords=h1['keywords']
)
print(f'h2_prompt: {h2_prompt}')
#input("Press ENTER to continue...")
self.h2_response = self.call_mistral_model(h2_prompt)
self.h2_response = self.h2_response.replace("```json", "").replace("```", "").strip()
self.h2_response = self.h2_response.replace("\n", "").replace("\\", "").replace("\'", "\"")
self.h2_response = json.loads(self.h2_response)
h2_key = list(self.h2_response.keys())[0]
for h2 in self.h2_response[h2_key]:
h2_dict = {'title': h2['title'], 'summary': h2['summary'], 'keywords': h2['keywords']}
toc.append(h2_dict)
print(f'h2_response: {self.h2_response}')
self.write_json_to_file(self.h2_response, os.path.join(self.toc_output_dir, 'h2_' + str(h1['title']) + '.json'))
toc_json = '{ "chapters": ' + json.dumps(toc, ensure_ascii=True, indent=4) + '}'
toc_json = toc_json.replace("\n", "").replace("\\", "")
self.write_json_to_file(toc_json, os.path.join(self.h2_output_path))
else:
console.print(f'h1_output_path does not exist: {self.h1_output_path}', style="blue")
exit()
def generate_h3_headings(self):
if os.path.exists(self.toc_output_dir + '/' + self.h2_json):
console.print(f'h2_output_path already exists: {self.toc_output_dir + '/' + self.h2_json}', style="blue")
if os.path.exists(self.toc_output_dir + '/' + self.h3_json):
console.print(f'h3_output_path already exists: {self.toc_output_dir + '/' + self.h3_json}', style="blue")
else:
console.print(f'Generating H3 headings...', style="blue")
self.h2_response = json.loads(open(self.h2_output_path, 'r', encoding='utf-8').read())
key1 = list(self.h2_response.keys())[0]
self.h2_headings = self.h2_response[key1]
print(f'h2_headings: {self.h2_headings}')
toc = []
for h2 in self.h2_headings:
h2_dict = {'title': h2['title'], 'summary': h2['summary'], 'keywords': h2['keywords']}
# Generate H3 headings under H2
h3_prompt = self.original_prompts['H3'].format(
section_title=h2['title'],
keywords=h2['keywords']
)
print(f'h3_prompt: {h3_prompt}')
#input("Press ENTER to continue...")
self.h3_response = self.call_mistral_model(h3_prompt)
self.h3_response = self.h3_response.replace("```json", "").replace("```", "").strip()
self.h3_response = self.h3_response.replace("\n", "").replace("\\", "")
self.h3_response = json.loads(self.h3_response)
h3_key = list(self.h3_response.keys())[0]
for h3 in self.h3_response[h3_key]:
h3_dict = {'title': h3['title'], 'summary': h3['summary'], 'keywords': h3['keywords']}
toc.append(h3_dict)
print(f'h3_response: {self.h3_response}')
self.write_json_to_file(self.h3_response, os.path.join(self.toc_output_dir, 'h3_' + str(h2['title']) + '.json'))
toc_json = '{ "chapters": ' + json.dumps(toc, ensure_ascii=True, indent=4) + '}'
toc_json = toc_json.replace("\n", "").replace("\\", "")
self.write_json_to_file(toc_json, os.path.join(self.h3_output_path))
else:
console.print(f'h2_output_path does not exist: {self.h2_output_path}', style="blue")
exit()
def generate_h4_headings(self):
if os.path.exists(self.toc_output_dir + '/' + self.h3_json):
console.print(f'h3_output_path already exists: {self.toc_output_dir + '/' + self.h3_json}', style="blue")
if os.path.exists(self.toc_output_dir + '/' + self.h4_json):
console.print(f'h4_output_path already exists: {self.toc_output_dir + '/' + self.h4_json}', style="blue")
else:
console.print(f'Generating H4 headings...', style="blue")
self.h3_response = json.loads(open(self.h3_output_path, 'r', encoding='utf-8').read())
key1 = list(self.h3_response.keys())[0]
self.h3_headings = self.h3_response[key1]
print(f'h3_headings: {self.h3_headings}')
toc = []
for h3 in self.h3_headings:
h3_dict = {'title': h3['title'], 'summary': h3['summary'], 'keywords': h3['keywords']}
# Generate H4 headings under H3
h4_prompt = self.original_prompts['H4'].format(
subsection_title=h3['title'],
keywords=h3['keywords']
)
print(f'h4_prompt: {h4_prompt}')
#input("Press ENTER to continue...")
self.h4_response = self.call_mistral_model(h4_prompt)
self.h4_response = self.h4_response.replace("```json", "").replace("```", "").strip()
self.h4_response = self.h4_response.replace("\n", "").replace("\\", "")
self.h4_response = json.loads(self.h4_response)
h4_key = list(self.h4_response.keys())[0]
for h4 in self.h4_response[h4_key]:
h4_dict = {'title': h4['title'], 'summary': h4['summary'], 'keywords': h4['keywords']}
toc.append(h4_dict)
print(f'h4_response: {self.h4_response}')
self.write_json_to_file(self.h4_response, os.path.join(self.toc_output_dir, 'h4_' + str(h3['title']) + '.json'))
toc_json = '{ "chapters": ' + json.dumps(toc, ensure_ascii=True, indent=4) + '}'
toc_json = toc_json.replace("\n", "").replace("\\", "")
self.write_json_to_file(toc_json, os.path.join(self.h4_output_path))
else:
console.print(f'h3_output_path does not exist: {self.h3_output_path}', style="blue")
exit()
def call_mistral_model(self, prompt, phase = 'toc'):
if phase == 'toc':
system_prompt = self.toc_system_prompt
elif phase == 'book':
system_prompt = self.book_content_system_prompt
elif phase == 'quentent_quality_check':
system_prompt = self.quentent_quality_check_system_prompt
console.print(f'System prompt: {system_prompt}', style="purple")
console.print(f'Prompt: {prompt}', style="purple")
chat_response = self.client.chat.complete(
model= self.mistral_model,
messages = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": prompt
}
]
)
# print(chat_response.choices[0].message.content)
return chat_response.choices[0].message.content
def call_mistral_model_original(self, prompt):
"""Generate text using the Mistral AI model."""
console.print(f'prompt: {prompt}', style="purple")
tokenizer.pad_token = tokenizer.eos_token
inputs = tokenizer.encode(prompt, return_tensors="pt", padding=True, truncation=False)
attention_mask = inputs.ne(tokenizer.pad_token_id).long()
inputs = inputs.to(device)
attention_mask = attention_mask.to(device)
generation_config = GenerationConfig(
num_beams=4,
early_stopping=True,
max_length=512
)
output = model.generate(
inputs,
attention_mask=attention_mask,
max_length=512,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True,
generation_config=generation_config
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
response = generated_text[len(prompt):].strip()
return response
def write_json_to_file(self, data, file_path, overwrite=False):
"""Write JSON data to a file."""
print(f'overwrite: {overwrite}')
print(f'file_path: {file_path}')
print(f'os.path.dirname(file_path): {os.path.dirname(file_path)}')
print(f'data: {data}')
os.makedirs(os.path.dirname(file_path), exist_ok=True)
if overwrite:
with open(file_path, 'w', encoding='utf-8') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
else:
with open(file_path, 'a', encoding='utf-8') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
def generate_book_content(self):
"""Generate the book content based on the table of contents."""
print(f'Generating book content...')
if os.path.exists(self.toc_output_dir + '/' + self.h4_json):
self.h4_response = json.loads(open(self.toc_output_dir + '/' + self.h4_json, 'r', encoding='utf-8').read())
key1 = list(self.h4_response.keys())[0]
self.h4_headings = self.h4_response[key1]
#print(f'h4_headings: {self.h4_headings}')
for h4 in self.h4_headings:
# Generate content for H1
h4_dict = {'title': h4['title'], 'summary': h4['summary'], 'keywords': h4['keywords']}
h4_content_prompt = self.book_content_prompts[ 'content'].format(title=h4['title'], summary=h4['summary'], keywords=h4['keywords'])
print(f'h4_content_prompt: {h4_content_prompt}')
h4_content = self.call_mistral_model(h4_content_prompt, phase='book')
h4_content = h4_content.replace("```json", "").replace("```", "").strip()
h4_content = h4_content.replace("\n", "").replace("\\", "")
h4_content = json.loads(h4_content)
print(f'h4_content: {h4_content}')
content = h4_content['chapters'][0]['content']
print(f'content: {content}')
input("Press ENTER to continue...")
h4_summary_prompt = self.book_content_prompts['summary'].format(content=content)
print(f'h4_summary_prompt: {h4_summary_prompt}')
h4_summary = self.call_mistral_model(h4_summary_prompt, phase='book')
h4_summary = h4_summary.replace("```json", "").replace("```", "").strip()
h4_summary = h4_summary.replace("\n", "").replace("\\", "")
h4_summary = json.loads(h4_summary)
print(f'h4_summary: {h4_summary}')
summary = h4_summary['chapters'][0]['summary']
print(f'summary: {summary}')
input("Press ENTER to continue...")
h4_dictionary_prompt = self.book_content_prompts['dictionary'].format(content=content)
print(f'h4_dictionary_prompt: {h4_dictionary_prompt}')
h4_dictionary = self.call_mistral_model(h4_dictionary_prompt, phase='book')
h4_dictionary = h4_dictionary.replace("```json", "").replace("```", "").strip()
h4_dictionary = h4_dictionary.replace("\n", "").replace("\\", "")
h4_dictionary = json.loads(h4_dictionary)
print(f'h4_dictionary: {h4_dictionary}')
k1 = list(h4_dictionary.keys())[0]
dictionary = h4_dictionary[k1]
print(f'dictionary: {dictionary}')
input("Press ENTER to continue...")
h4_links_prompt = self.book_content_prompts['links'].format(content=content)
print(f'h4_links_prompt: {h4_links_prompt}')
h4_links = self.call_mistral_model(h4_links_prompt, phase='book')
h4_links = h4_links.replace("```json", "").replace("```", "").strip()
h4_links = h4_links.replace("\n", "").replace("\\", "")
h4_links = json.loads(h4_links)
print(f'h4_links: {h4_links}')
links = h4_links['chapters'][0]['links']
print(f'links: {links}')
input("Press ENTER to continue...")
h4['content'] = content
h4['summary'] = summary
h4['dictionary'] = dictionary
h4['links'] = links
filename = 'h4_' + str(h4['title']) + '.json'
self.write_json_to_file(h4, os.path.join(self.content_output_dir, filename), overwrite=True)
print(f'Content generated: {filename} at {self.content_output_dir}')
input("Press ENTER to continue...")
def parse_response(self, keyword, response):
try:
data = json.loads(response)
return data.get(keyword, [])
except json.JSONDecodeError:
print("Error: The response is not a valid JSON format.")
return []
def parse_sub_response(self, keyword, response):
try:
data = json.loads(response[keyword])
print(f'data: {data}')
return data
except json.JSONDecodeError:
print("Error: The response is not a valid JSON format.")
return []
def main(self):
# Generate table of contents
self.generate_table_of_contents()
# Generate book content
self.generate_book_content()
def read_json_from_file(self, file_path):
"""Read input JSON file """
with open(file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
return data
def quentent_quality_check(self, text):
score = self.call_mistral_model(text, phase='quentent_quality_check')
return score
if __name__ == '__main__':
book_generator = BookGenerator()
book_generator.main()