-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfd.py
48 lines (37 loc) · 1.58 KB
/
fd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from scipy import linalg
import numpy as np
import warnings
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
Taken from: https://github.com/bioinf-jku/TTUR/blob/master/fid.py
Inputs:
mu1 (ndarray): The sample mean over the first set of features.
mu2 (float) : The sample mean over the second set of features.
sigma1 (float): The covariance matrix over the first set of features.
sigma2 (float): The covariance matrix over the second set of features.
Returns:
(float): The Frechet distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
diff = mu1 - mu2
# product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = (
"fid calculation produces singular product; adding %s to diagonal of cov estimates"
% eps
)
warnings.warn(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
print("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean