forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaste_contact_maps.py
200 lines (160 loc) · 7.25 KB
/
paste_contact_maps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Combines predictions by pasting."""
import os
from absl import app
from absl import flags
from absl import logging
import numpy as np
import six
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
from alphafold_casp13 import distogram_io
from alphafold_casp13 import parsers
flags.DEFINE_string("pickle_input_dir", None,
"Directory to read pickle distance histogram files from.")
flags.DEFINE_string("output_dir", None, "Directory to write chain RR files to.")
flags.DEFINE_string("tfrecord_path", "",
"If provided, construct the average weighted by number of "
"alignments.")
flags.DEFINE_string("crop_sizes", "64,128,256", "The crop sizes to use.")
flags.DEFINE_integer("crop_step", 32, "The step size for cropping.")
FLAGS = flags.FLAGS
def generate_domains(target, sequence, crop_sizes, crop_step):
"""Take fasta files and generate a domain definition for data generation."""
logging.info("Generating crop domains for target %s", target)
windows = [int(x) for x in crop_sizes.split(",")]
num_residues = len(sequence)
domains = []
domains.append({"name": target, "description": (1, num_residues)})
for window in windows:
starts = list(range(0, num_residues - window, crop_step))
# Append a last crop to ensure we get all the way to the end of the
# sequence, even when num_residues - window is not divisible by crop_step.
if num_residues >= window:
starts += [num_residues - window]
for start in starts:
name = "%s-l%i_s%i" % (target, window, start)
domains.append({"name": name, "description": (start + 1, start + window)})
return domains
def get_weights(path):
"""Fetch all the weights from a TFRecord."""
if not path:
return {}
logging.info("Getting weights from %s", path)
weights = {}
record_iterator = tf.python_io.tf_record_iterator(path=path)
for serialized_tfexample in record_iterator:
example = tf.train.Example()
example.ParseFromString(serialized_tfexample)
domain_name = six.ensure_str(
example.features.feature["domain_name"].bytes_list.value[0])
weights[domain_name] = float(
example.features.feature["num_alignments"].int64_list.value[0])
logging.info("Weight %s: %d", domain_name, weights[domain_name])
logging.info("Loaded %d weights", len(weights))
return weights
def paste_distance_histograms(
input_dir, output_dir, weights, crop_sizes, crop_step):
"""Paste together distograms for given domains of given targets and write.
Domains distance histograms are 'pasted', meaning they are substituted
directly into the contact map. The order is determined by the order in the
domain definition file.
Args:
input_dir: String, path to directory containing chain and domain-level
distogram files.
output_dir: String, path to directory to write out chain-level distrogram
files.
weights: A dictionary with weights.
crop_sizes: The crop sizes.
crop_step: The step size for cropping.
Raises:
ValueError: if histogram parameters don't match.
"""
tf.io.gfile.makedirs(output_dir)
targets = tf.io.gfile.glob(os.path.join(input_dir, "*.pickle"))
targets = [os.path.splitext(os.path.basename(t))[0] for t in targets]
targets = set([t.split("-")[0] for t in targets])
logging.info("Pasting distance histograms for %d targets", len(targets))
for target in sorted(targets):
logging.info("%s as chain", target)
chain_pickle_path = os.path.join(input_dir, "%s.pickle" % target)
distance_histogram_dict = parsers.parse_distance_histogram_dict(
chain_pickle_path)
combined_cmap = np.array(distance_histogram_dict["probs"])
# Make the counter map 1-deep but still rank 3.
counter_map = np.ones_like(combined_cmap[:, :, 0:1])
sequence = distance_histogram_dict["sequence"]
target_domains = generate_domains(
target=target, sequence=sequence, crop_sizes=crop_sizes,
crop_step=crop_step)
# Paste in each domain.
for domain in sorted(target_domains, key=lambda x: x["name"]):
if domain["name"] == target:
logging.info("Skipping %s as domain", target)
continue
if "," in domain["description"]:
logging.info("Skipping multisegment domain %s",
domain["name"])
continue
crop_start, crop_end = domain["description"]
domain_pickle_path = os.path.join(input_dir, "%s.pickle" % domain["name"])
weight = weights.get(domain["name"], 1e9)
logging.info("Pasting %s: %d-%d. weight: %f", domain_pickle_path,
crop_start, crop_end, weight)
domain_distance_histogram_dict = parsers.parse_distance_histogram_dict(
domain_pickle_path)
for field in ["num_bins", "min_range", "max_range"]:
if domain_distance_histogram_dict[field] != distance_histogram_dict[
field]:
raise ValueError("Field {} does not match {} {}".format(
field,
domain_distance_histogram_dict[field],
distance_histogram_dict[field]))
weight_matrix_size = crop_end - crop_start + 1
weight_matrix = np.ones(
(weight_matrix_size, weight_matrix_size), dtype=np.float32) * weight
combined_cmap[crop_start - 1:crop_end, crop_start - 1:crop_end, :] += (
domain_distance_histogram_dict["probs"] *
np.expand_dims(weight_matrix, 2))
counter_map[crop_start - 1:crop_end,
crop_start - 1:crop_end, 0] += weight_matrix
# Broadcast across the histogram bins.
combined_cmap /= counter_map
# Write out full-chain cmap for folding.
output_chain_pickle_path = os.path.join(output_dir,
"{}.pickle".format(target))
logging.info("Writing to %s", output_chain_pickle_path)
distance_histogram_dict["probs"] = combined_cmap
distance_histogram_dict["target"] = target
# Save the distogram pickle file.
distogram_io.save_distance_histogram_from_dict(
output_chain_pickle_path, distance_histogram_dict)
# Compute the contact map and save it as an RR file.
contact_probs = distogram_io.contact_map_from_distogram(
distance_histogram_dict)
rr_path = os.path.join(output_dir, "%s.rr" % target)
distogram_io.save_rr_file(
filename=rr_path,
probs=contact_probs,
domain=target,
sequence=distance_histogram_dict["sequence"])
def main(argv):
del argv # Unused.
flags.mark_flag_as_required("pickle_input_dir")
weights = get_weights(FLAGS.tfrecord_path)
paste_distance_histograms(
FLAGS.pickle_input_dir, FLAGS.output_dir, weights, FLAGS.crop_sizes,
FLAGS.crop_step)
if __name__ == "__main__":
app.run(main)