forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
1183 lines (1010 loc) · 44.6 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
################################################################################
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
"""Script to train CURL."""
import collections
import functools
from absl import logging
import numpy as np
from sklearn import neighbors
import sonnet as snt
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
import tensorflow_probability as tfp
from curl import model
from curl import utils
tfc = tf.compat.v1
# pylint: disable=g-long-lambda
MainOps = collections.namedtuple('MainOps', [
'elbo', 'll', 'log_p_x', 'kl_y', 'kl_z', 'elbo_supervised', 'll_supervised',
'log_p_x_supervised', 'kl_y_supervised', 'kl_z_supervised',
'cat_probs', 'confusion', 'purity', 'latents'
])
DatasetTuple = collections.namedtuple('DatasetTuple', [
'train_data', 'train_iter_for_clf', 'train_data_for_clf',
'valid_iter', 'valid_data', 'test_iter', 'test_data', 'ds_info'
])
def compute_purity(confusion):
return np.sum(np.max(confusion, axis=0)).astype(float) / np.sum(confusion)
def process_dataset(iterator,
ops_to_run,
sess,
feed_dict=None,
aggregation_ops=np.stack,
processing_ops=None):
"""Process a dataset by computing ops and accumulating batch by batch.
Args:
iterator: iterator through the dataset.
ops_to_run: dict, tf ops to run as part of dataset processing.
sess: tf.Session to use.
feed_dict: dict, required placeholders.
aggregation_ops: fn or dict of fns, aggregation op to apply for each op.
processing_ops: fn or dict of fns, extra processing op to apply for each op.
Returns:
Results accumulated over dataset.
"""
if not isinstance(ops_to_run, dict):
raise TypeError('ops_to_run must be specified as a dict')
if not isinstance(aggregation_ops, dict):
aggregation_ops = {k: aggregation_ops for k in ops_to_run}
if not isinstance(processing_ops, dict):
processing_ops = {k: processing_ops for k in ops_to_run}
out_results = collections.OrderedDict()
sess.run(iterator.initializer)
while True:
# Iterate over the whole dataset and append the results to a per-key list.
try:
outs = sess.run(ops_to_run, feed_dict=feed_dict)
for key, value in outs.items():
out_results.setdefault(key, []).append(value)
except tf.errors.OutOfRangeError: # end of dataset iterator
break
# Aggregate and process results.
for key, value in out_results.items():
if aggregation_ops[key]:
out_results[key] = aggregation_ops[key](value)
if processing_ops[key]:
out_results[key] = processing_ops[key](out_results[key], axis=0)
return out_results
def get_data_sources(dataset, dataset_kwargs, batch_size, test_batch_size,
training_data_type, n_concurrent_classes, image_key,
label_key):
"""Create and return data sources for training, validation, and testing.
Args:
dataset: str, name of dataset ('mnist', 'omniglot', etc).
dataset_kwargs: dict, kwargs used in tf dataset constructors.
batch_size: int, batch size used for training.
test_batch_size: int, batch size used for evaluation.
training_data_type: str, how training data is seen ('iid', or 'sequential').
n_concurrent_classes: int, # classes seen at a time (ignored for 'iid').
image_key: str, name if image key in dataset.
label_key: str, name of label key in dataset.
Returns:
A namedtuple containing all of the dataset iterators and batches.
"""
# Load training data sources
ds_train, ds_info = tfds.load(
name=dataset,
split=tfds.Split.TRAIN,
with_info=True,
as_dataset_kwargs={'shuffle_files': False},
**dataset_kwargs)
# Validate assumption that data is in [0, 255]
assert ds_info.features[image_key].dtype == tf.uint8
n_classes = ds_info.features[label_key].num_classes
num_train_examples = ds_info.splits['train'].num_examples
def preprocess_data(x):
"""Convert images from uint8 in [0, 255] to float in [0, 1]."""
x[image_key] = tf.image.convert_image_dtype(x[image_key], tf.float32)
return x
if training_data_type == 'sequential':
c = None # The index of the class number, None for now and updated later
if n_concurrent_classes == 1:
filter_fn = lambda v: tf.equal(v[label_key], c)
else:
# Define the lowest and highest class number at each data period.
assert n_classes % n_concurrent_classes == 0, (
'Number of total classes must be divisible by '
'number of concurrent classes')
cmin = []
cmax = []
for i in range(int(n_classes / n_concurrent_classes)):
for _ in range(n_concurrent_classes):
cmin.append(i * n_concurrent_classes)
cmax.append((i + 1) * n_concurrent_classes)
filter_fn = lambda v: tf.logical_and(
tf.greater_equal(v[label_key], cmin[c]), tf.less(
v[label_key], cmax[c]))
# Set up data sources/queues (one for each class).
train_datasets = []
train_iterators = []
train_data = []
full_ds = ds_train.repeat().shuffle(num_train_examples, seed=0)
full_ds = full_ds.map(preprocess_data)
for c in range(n_classes):
filtered_ds = full_ds.filter(filter_fn).batch(
batch_size, drop_remainder=True)
train_datasets.append(filtered_ds)
train_iterators.append(train_datasets[-1].make_one_shot_iterator())
train_data.append(train_iterators[-1].get_next())
else: # not sequential
full_ds = ds_train.repeat().shuffle(num_train_examples, seed=0)
full_ds = full_ds.map(preprocess_data)
train_datasets = full_ds.batch(batch_size, drop_remainder=True)
train_data = train_datasets.make_one_shot_iterator().get_next()
# Set up data source to get full training set for classifier training
full_ds = ds_train.repeat(1).shuffle(num_train_examples, seed=0)
full_ds = full_ds.map(preprocess_data)
train_datasets_for_classifier = full_ds.batch(
test_batch_size, drop_remainder=True)
train_iter_for_classifier = (
train_datasets_for_classifier.make_initializable_iterator())
train_data_for_classifier = train_iter_for_classifier.get_next()
# Load validation dataset.
try:
valid_dataset = tfds.load(
name=dataset, split=tfds.Split.VALIDATION, **dataset_kwargs)
num_valid_examples = ds_info.splits[tfds.Split.VALIDATION].num_examples
assert (num_valid_examples %
test_batch_size == 0), ('test_batch_size must be a divisor of %d' %
num_valid_examples)
valid_dataset = valid_dataset.repeat(1).batch(
test_batch_size, drop_remainder=True)
valid_dataset = valid_dataset.map(preprocess_data)
valid_iter = valid_dataset.make_initializable_iterator()
valid_data = valid_iter.get_next()
except (KeyError, ValueError):
logging.warning('No validation set!!')
valid_iter = None
valid_data = None
# Load test dataset.
test_dataset = tfds.load(
name=dataset, split=tfds.Split.TEST, **dataset_kwargs)
num_test_examples = ds_info.splits['test'].num_examples
assert (num_test_examples %
test_batch_size == 0), ('test_batch_size must be a divisor of %d' %
num_test_examples)
test_dataset = test_dataset.repeat(1).batch(
test_batch_size, drop_remainder=True)
test_dataset = test_dataset.map(preprocess_data)
test_iter = test_dataset.make_initializable_iterator()
test_data = test_iter.get_next()
logging.info('Loaded %s data', dataset)
return DatasetTuple(train_data, train_iter_for_classifier,
train_data_for_classifier, valid_iter, valid_data,
test_iter, test_data, ds_info)
def setup_training_and_eval_graphs(x, label, y, n_y, curl_model,
classify_with_samples, is_training, name):
"""Set up the graph and return ops for training or evaluation.
Args:
x: tf placeholder for image.
label: tf placeholder for ground truth label.
y: tf placeholder for some self-supervised label/prediction.
n_y: int, dimensionality of discrete latent variable y.
curl_model: snt.AbstractModule representing the CURL model.
classify_with_samples: bool, whether to *sample* latents for classification.
is_training: bool, whether this graph is the training graph.
name: str, graph name.
Returns:
A namedtuple with the required graph ops to perform training or evaluation.
"""
# kl_y_supervised is -log q(y=y_true | x)
(log_p_x, kl_y, kl_z, log_p_x_supervised, kl_y_supervised,
kl_z_supervised) = curl_model.log_prob_elbo_components(x, y)
ll = log_p_x - kl_y - kl_z
elbo = -tf.reduce_mean(ll)
# Supervised loss, either for SMGR, or adaptation to supervised benchmark.
ll_supervised = log_p_x_supervised - kl_y_supervised - kl_z_supervised
elbo_supervised = -tf.reduce_mean(ll_supervised)
# Summaries
kl_y = tf.reduce_mean(kl_y)
kl_z = tf.reduce_mean(kl_z)
log_p_x_supervised = tf.reduce_mean(log_p_x_supervised)
kl_y_supervised = tf.reduce_mean(kl_y_supervised)
kl_z_supervised = tf.reduce_mean(kl_z_supervised)
# Evaluation.
hiddens = curl_model.get_shared_rep(x, is_training=is_training)
cat = curl_model.infer_cluster(hiddens)
cat_probs = cat.probs
confusion = tf.confusion_matrix(label, tf.argmax(cat_probs, axis=1),
num_classes=n_y, name=name + '_confusion')
purity = (tf.reduce_sum(tf.reduce_max(confusion, axis=0))
/ tf.reduce_sum(confusion))
if classify_with_samples:
latents = curl_model.infer_latent(
hiddens=hiddens, y=tf.to_float(cat.sample())).sample()
else:
latents = curl_model.infer_latent(
hiddens=hiddens, y=tf.to_float(cat.mode())).mean()
return MainOps(elbo, ll, log_p_x, kl_y, kl_z, elbo_supervised, ll_supervised,
log_p_x_supervised, kl_y_supervised, kl_z_supervised,
cat_probs, confusion, purity, latents)
def get_generated_data(sess, gen_op, y_input, gen_buffer_size,
component_counts):
"""Get generated model data (in place of saving a model snapshot).
Args:
sess: tf.Session.
gen_op: tf op representing a batch of generated data.
y_input: tf placeholder for which mixture components to generate from.
gen_buffer_size: int, number of data points to generate.
component_counts: np.array, prior probabilities over components.
Returns:
A tuple of two numpy arrays
The generated data
The corresponding labels
"""
batch_size, n_y = y_input.shape.as_list()
# Sample based on the history of all components used.
cluster_sample_probs = component_counts.astype(float)
cluster_sample_probs = np.maximum(1e-12, cluster_sample_probs)
cluster_sample_probs = cluster_sample_probs / np.sum(cluster_sample_probs)
# Now generate the data based on the specified cluster prior.
gen_buffer_images = []
gen_buffer_labels = []
for _ in range(gen_buffer_size):
gen_label = np.random.choice(
np.arange(n_y),
size=(batch_size,),
replace=True,
p=cluster_sample_probs)
y_gen_posterior_vals = np.zeros((batch_size, n_y))
y_gen_posterior_vals[np.arange(batch_size), gen_label] = 1
gen_image = sess.run(gen_op, feed_dict={y_input: y_gen_posterior_vals})
gen_buffer_images.append(gen_image)
gen_buffer_labels.append(gen_label)
gen_buffer_images = np.vstack(gen_buffer_images)
gen_buffer_labels = np.concatenate(gen_buffer_labels)
return gen_buffer_images, gen_buffer_labels
def setup_dynamic_ops(n_y):
"""Set up ops to move / copy mixture component weights for dynamic expansion.
Args:
n_y: int, dimensionality of discrete latent variable y.
Returns:
A dict containing all of the ops required for dynamic updating.
"""
# Set up graph ops to dynamically modify component params.
graph = tf.get_default_graph()
# 1) Ops to get and set latent encoder params (entire tensors)
latent_enc_tensors = {}
for k in range(n_y):
latent_enc_tensors['latent_w_' + str(k)] = graph.get_tensor_by_name(
'latent_encoder/mlp_latent_encoder_{}/w:0'.format(k))
latent_enc_tensors['latent_b_' + str(k)] = graph.get_tensor_by_name(
'latent_encoder/mlp_latent_encoder_{}/b:0'.format(k))
latent_enc_assign_ops = {}
latent_enc_phs = {}
for key, tensor in latent_enc_tensors.items():
latent_enc_phs[key] = tfc.placeholder(tensor.dtype, tensor.shape)
latent_enc_assign_ops[key] = tf.assign(tensor, latent_enc_phs[key])
# 2) Ops to get and set cluster encoder params (columns of a tensor)
# We will be copying column ind_from to column ind_to.
cluster_w = graph.get_tensor_by_name(
'cluster_encoder/mlp_cluster_encoder_final/w:0')
cluster_b = graph.get_tensor_by_name(
'cluster_encoder/mlp_cluster_encoder_final/b:0')
ind_from = tfc.placeholder(dtype=tf.int32)
ind_to = tfc.placeholder(dtype=tf.int32)
# Determine indices of cluster encoder weights and biases to be updated
w_indices = tf.transpose(
tf.stack([
tf.range(cluster_w.shape[0], dtype=tf.int32),
ind_to * tf.ones(shape=(cluster_w.shape[0],), dtype=tf.int32)
]))
b_indices = ind_to
# Determine updates themselves
cluster_w_updates = tf.squeeze(
tf.slice(cluster_w, begin=(0, ind_from), size=(cluster_w.shape[0], 1)))
cluster_b_updates = cluster_b[ind_from]
# Create update ops
cluster_w_update_op = tf.scatter_nd_update(cluster_w, w_indices,
cluster_w_updates)
cluster_b_update_op = tf.scatter_update(cluster_b, b_indices,
cluster_b_updates)
# 3) Ops to get and set latent prior params (columns of a tensor)
# We will be copying column ind_from to column ind_to.
latent_prior_mu_w = graph.get_tensor_by_name(
'latent_decoder/latent_prior_mu/w:0')
latent_prior_sigma_w = graph.get_tensor_by_name(
'latent_decoder/latent_prior_sigma/w:0')
mu_indices = tf.transpose(
tf.stack([
ind_to * tf.ones(shape=(latent_prior_mu_w.shape[1],), dtype=tf.int32),
tf.range(latent_prior_mu_w.shape[1], dtype=tf.int32)
]))
mu_updates = tf.squeeze(
tf.slice(
latent_prior_mu_w,
begin=(ind_from, 0),
size=(1, latent_prior_mu_w.shape[1])))
mu_update_op = tf.scatter_nd_update(latent_prior_mu_w, mu_indices, mu_updates)
sigma_indices = tf.transpose(
tf.stack([
ind_to *
tf.ones(shape=(latent_prior_sigma_w.shape[1],), dtype=tf.int32),
tf.range(latent_prior_sigma_w.shape[1], dtype=tf.int32)
]))
sigma_updates = tf.squeeze(
tf.slice(
latent_prior_sigma_w,
begin=(ind_from, 0),
size=(1, latent_prior_sigma_w.shape[1])))
sigma_update_op = tf.scatter_nd_update(latent_prior_sigma_w, sigma_indices,
sigma_updates)
dynamic_ops = {
'ind_from_ph': ind_from,
'ind_to_ph': ind_to,
'latent_enc_tensors': latent_enc_tensors,
'latent_enc_assign_ops': latent_enc_assign_ops,
'latent_enc_phs': latent_enc_phs,
'cluster_w_update_op': cluster_w_update_op,
'cluster_b_update_op': cluster_b_update_op,
'mu_update_op': mu_update_op,
'sigma_update_op': sigma_update_op
}
return dynamic_ops
def copy_component_params(ind_from, ind_to, sess, ind_from_ph, ind_to_ph,
latent_enc_tensors, latent_enc_assign_ops,
latent_enc_phs,
cluster_w_update_op, cluster_b_update_op,
mu_update_op, sigma_update_op):
"""Copy parameters from component i to component j.
Args:
ind_from: int, component index to copy from.
ind_to: int, component index to copy to.
sess: tf.Session.
ind_from_ph: tf placeholder for component to copy from.
ind_to_ph: tf placeholder for component to copy to.
latent_enc_tensors: dict, tensors in the latent posterior encoder.
latent_enc_assign_ops: dict, assignment ops for latent posterior encoder.
latent_enc_phs: dict, placeholders for assignment ops.
cluster_w_update_op: op for updating weights of cluster encoder.
cluster_b_update_op: op for updating biased of cluster encoder.
mu_update_op: op for updating mu weights of latent prior.
sigma_update_op: op for updating sigma weights of latent prior.
"""
update_ops = []
feed_dict = {}
# Copy for latent encoder.
new_w_val, new_b_val = sess.run([
latent_enc_tensors['latent_w_' + str(ind_from)],
latent_enc_tensors['latent_b_' + str(ind_from)]
])
update_ops.extend([
latent_enc_assign_ops['latent_w_' + str(ind_to)],
latent_enc_assign_ops['latent_b_' + str(ind_to)]
])
feed_dict.update({
latent_enc_phs['latent_w_' + str(ind_to)]: new_w_val,
latent_enc_phs['latent_b_' + str(ind_to)]: new_b_val
})
# Copy for cluster encoder softmax.
update_ops.extend([cluster_w_update_op, cluster_b_update_op])
feed_dict.update({ind_from_ph: ind_from, ind_to_ph: ind_to})
# Copy for latent prior.
update_ops.extend([mu_update_op, sigma_update_op])
feed_dict.update({ind_from_ph: ind_from, ind_to_ph: ind_to})
sess.run(update_ops, feed_dict)
def run_training(
dataset,
training_data_type,
n_concurrent_classes,
blend_classes,
train_supervised,
n_steps,
random_seed,
lr_init,
lr_factor,
lr_schedule,
output_type,
n_y,
n_y_active,
n_z,
encoder_kwargs,
decoder_kwargs,
dynamic_expansion,
ll_thresh,
classify_with_samples,
report_interval,
knn_values,
gen_replay_type,
use_supervised_replay):
"""Run training script.
Args:
dataset: str, name of the dataset.
training_data_type: str, type of training run ('iid' or 'sequential').
n_concurrent_classes: int, # of classes seen at a time (ignored for 'iid').
blend_classes: bool, whether to blend in samples from the next class.
train_supervised: bool, whether to use supervision during training.
n_steps: int, number of total training steps.
random_seed: int, seed for tf and numpy RNG.
lr_init: float, initial learning rate.
lr_factor: float, learning rate decay factor.
lr_schedule: float, epochs at which the decay should be applied.
output_type: str, output distribution (currently only 'bernoulli').
n_y: int, maximum possible dimensionality of discrete latent variable y.
n_y_active: int, starting dimensionality of discrete latent variable y.
n_z: int, dimensionality of continuous latent variable z.
encoder_kwargs: dict, parameters to specify encoder.
decoder_kwargs: dict, parameters to specify decoder.
dynamic_expansion: bool, whether to perform dynamic expansion.
ll_thresh: float, log-likelihood threshold below which to keep poor samples.
classify_with_samples: bool, whether to sample latents when classifying.
report_interval: int, number of steps after which to evaluate and report.
knn_values: list of ints, k values for different k-NN classifiers to run
(values of 3, 5, and 10 were used in different parts of the paper).
gen_replay_type: str, 'fixed', 'dynamic', or None.
use_supervised_replay: str, whether to use supervised replay (aka 'SMGR').
"""
# Set tf random seed.
tfc.set_random_seed(random_seed)
np.set_printoptions(precision=2, suppress=True)
# First set up the data source(s) and get dataset info.
if dataset == 'mnist':
batch_size = 100
test_batch_size = 1000
dataset_kwargs = {}
image_key = 'image'
label_key = 'label'
elif dataset == 'omniglot':
batch_size = 15
test_batch_size = 1318
dataset_kwargs = {}
image_key = 'image'
label_key = 'alphabet'
else:
raise NotImplementedError
dataset_ops = get_data_sources(dataset, dataset_kwargs, batch_size,
test_batch_size, training_data_type,
n_concurrent_classes, image_key, label_key)
train_data = dataset_ops.train_data
train_data_for_clf = dataset_ops.train_data_for_clf
valid_data = dataset_ops.valid_data
test_data = dataset_ops.test_data
output_shape = dataset_ops.ds_info.features[image_key].shape
n_x = np.prod(output_shape)
n_classes = dataset_ops.ds_info.features[label_key].num_classes
num_train_examples = dataset_ops.ds_info.splits['train'].num_examples
# Check that the number of classes is compatible with the training scenario
assert n_classes % n_concurrent_classes == 0
assert n_steps % (n_classes / n_concurrent_classes) == 0
# Set specific params depending on the type of gen replay
if gen_replay_type == 'fixed':
data_period = data_period = int(n_steps /
(n_classes / n_concurrent_classes))
gen_every_n = 2 # Blend in a gen replay batch every 2 steps
gen_refresh_period = data_period # How often to refresh the batches of
# generated data (equivalent to snapshotting a generative model)
gen_refresh_on_expansion = False # Don't refresh on dyn expansion
elif gen_replay_type == 'dynamic':
gen_every_n = 2 # Blend in a gen replay batch every 2 steps
gen_refresh_period = 1e8 # Never refresh generated data periodically
gen_refresh_on_expansion = True # Refresh on dyn expansion instead
elif gen_replay_type is None:
gen_every_n = 0 # Don't use any gen replay batches
gen_refresh_period = 1e8 # Never refresh generated data periodically
gen_refresh_on_expansion = False # Don't refresh on dyn expansion
else:
raise NotImplementedError
max_gen_batches = 5000 # Max num of gen batches (proxy for storing a model)
# Set dynamic expansion parameters
exp_wait_steps = 100 # Steps to wait after expansion before eligible again
exp_burn_in = 100 # Steps to wait at start of learning before eligible
exp_buffer_size = 100 # Size of the buffer of poorly explained data
num_buffer_train_steps = 10 # Num steps to train component on buffer
# Define a global tf variable for the number of active components.
n_y_active_np = n_y_active
n_y_active = tfc.get_variable(
initializer=tf.constant(n_y_active_np, dtype=tf.int32),
trainable=False,
name='n_y_active',
dtype=tf.int32)
logging.info('Starting CURL script on %s data.', dataset)
# Set up placeholders for training.
x_train_raw = tfc.placeholder(
dtype=tf.float32, shape=(batch_size,) + output_shape)
label_train = tfc.placeholder(dtype=tf.int32, shape=(batch_size,))
def binarize_fn(x):
"""Binarize a Bernoulli by rounding the probabilities.
Args:
x: tf tensor, input image.
Returns:
A tf tensor with the binarized image
"""
return tf.cast(tf.greater(x, 0.5 * tf.ones_like(x)), tf.float32)
if dataset == 'mnist':
x_train = binarize_fn(x_train_raw)
x_valid = binarize_fn(valid_data[image_key]) if valid_data else None
x_test = binarize_fn(test_data[image_key])
x_train_for_clf = binarize_fn(train_data_for_clf[image_key])
elif 'cifar' in dataset or dataset == 'omniglot':
x_train = x_train_raw
x_valid = valid_data[image_key] if valid_data else None
x_test = test_data[image_key]
x_train_for_clf = train_data_for_clf[image_key]
else:
raise ValueError('Unknown dataset {}'.format(dataset))
label_valid = valid_data[label_key] if valid_data else None
label_test = test_data[label_key]
# Set up CURL modules.
shared_encoder = model.SharedEncoder(name='shared_encoder', **encoder_kwargs)
latent_encoder = functools.partial(model.latent_encoder_fn, n_y=n_y, n_z=n_z)
latent_encoder = snt.Module(latent_encoder, name='latent_encoder')
latent_decoder = functools.partial(model.latent_decoder_fn, n_z=n_z)
latent_decoder = snt.Module(latent_decoder, name='latent_decoder')
cluster_encoder = functools.partial(
model.cluster_encoder_fn, n_y_active=n_y_active, n_y=n_y)
cluster_encoder = snt.Module(cluster_encoder, name='cluster_encoder')
data_decoder = functools.partial(
model.data_decoder_fn,
output_type=output_type,
output_shape=output_shape,
n_x=n_x,
n_y=n_y,
**decoder_kwargs)
data_decoder = snt.Module(data_decoder, name='data_decoder')
# Uniform prior over y.
prior_train_probs = utils.construct_prior_probs(batch_size, n_y, n_y_active)
prior_train = snt.Module(
lambda: tfp.distributions.OneHotCategorical(probs=prior_train_probs),
name='prior_unconditional_train')
prior_test_probs = utils.construct_prior_probs(test_batch_size, n_y,
n_y_active)
prior_test = snt.Module(
lambda: tfp.distributions.OneHotCategorical(probs=prior_test_probs),
name='prior_unconditional_test')
model_train = model.Curl(
prior_train,
latent_decoder,
data_decoder,
shared_encoder,
cluster_encoder,
latent_encoder,
n_y_active,
is_training=True,
name='curl_train')
model_eval = model.Curl(
prior_test,
latent_decoder,
data_decoder,
shared_encoder,
cluster_encoder,
latent_encoder,
n_y_active,
is_training=False,
name='curl_test')
# Set up training graph
y_train = label_train if train_supervised else None
y_valid = label_valid if train_supervised else None
y_test = label_test if train_supervised else None
train_ops = setup_training_and_eval_graphs(
x_train,
label_train,
y_train,
n_y,
model_train,
classify_with_samples,
is_training=True,
name='train')
hiddens_for_clf = model_eval.get_shared_rep(x_train_for_clf,
is_training=False)
cat_for_clf = model_eval.infer_cluster(hiddens_for_clf)
if classify_with_samples:
latents_for_clf = model_eval.infer_latent(
hiddens=hiddens_for_clf, y=tf.to_float(cat_for_clf.sample())).sample()
else:
latents_for_clf = model_eval.infer_latent(
hiddens=hiddens_for_clf, y=tf.to_float(cat_for_clf.mode())).mean()
# Set up validation graph
if valid_data is not None:
valid_ops = setup_training_and_eval_graphs(
x_valid,
label_valid,
y_valid,
n_y,
model_eval,
classify_with_samples,
is_training=False,
name='valid')
# Set up test graph
test_ops = setup_training_and_eval_graphs(
x_test,
label_test,
y_test,
n_y,
model_eval,
classify_with_samples,
is_training=False,
name='test')
# Set up optimizer (with scheduler).
global_step = tf.train.get_or_create_global_step()
lr_schedule = [
tf.cast(el * num_train_examples / batch_size, tf.int64)
for el in lr_schedule
]
num_schedule_steps = tf.reduce_sum(
tf.cast(global_step >= lr_schedule, tf.float32))
lr = float(lr_init) * float(lr_factor)**num_schedule_steps
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
train_step = optimizer.minimize(train_ops.elbo)
train_step_supervised = optimizer.minimize(train_ops.elbo_supervised)
# For dynamic expansion, we want to train only new-component-related params
cat_params = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES,
'cluster_encoder/mlp_cluster_encoder_final')
component_params = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES,
'latent_encoder/mlp_latent_encoder_*')
prior_params = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES,
'latent_decoder/latent_prior*')
train_step_expansion = optimizer.minimize(
train_ops.elbo_supervised,
var_list=cat_params+component_params+prior_params)
# Set up ops for generative replay
if gen_every_n > 0:
# How many generative batches will we use each period?
gen_buffer_size = min(
int(gen_refresh_period / gen_every_n), max_gen_batches)
# Class each sample should be drawn from (default to uniform prior)
y_gen = tfp.distributions.OneHotCategorical(
probs=np.ones((batch_size, n_y)) / n_y,
dtype=tf.float32,
name='extra_train_classes').sample()
gen_samples = model_train.sample(y=y_gen, mean=True)
if dataset == 'mnist' or dataset == 'omniglot':
gen_samples = binarize_fn(gen_samples)
# Set up ops to dynamically modify parameters (for dynamic expansion)
dynamic_ops = setup_dynamic_ops(n_y)
logging.info('Created computation graph.')
n_steps_per_class = n_steps / n_classes # pylint: disable=invalid-name
cumulative_component_counts = np.array([0] * n_y).astype(float)
recent_component_counts = np.array([0] * n_y).astype(float)
gen_buffer_ind = 0
# Buffer of poorly explained data (if we're doing dynamic expansion).
poor_data_buffer = []
poor_data_labels = []
all_full_poor_data_buffers = []
all_full_poor_data_labels = []
has_expanded = False
steps_since_expansion = 0
gen_buffer_ind = 0
eligible_for_expansion = False # Flag to ensure we wait a bit after expansion
# Set up basic ops to run and quantities to log.
ops_to_run = {
'train_ELBO': train_ops.elbo,
'train_log_p_x': train_ops.log_p_x,
'train_kl_y': train_ops.kl_y,
'train_kl_z': train_ops.kl_z,
'train_ll': train_ops.ll,
'train_batch_purity': train_ops.purity,
'train_probs': train_ops.cat_probs,
'n_y_active': n_y_active
}
if valid_data is not None:
valid_ops_to_run = {
'valid_ELBO': valid_ops.elbo,
'valid_kl_y': valid_ops.kl_y,
'valid_kl_z': valid_ops.kl_z,
'valid_confusion': valid_ops.confusion
}
else:
valid_ops_to_run = {}
test_ops_to_run = {
'test_ELBO': test_ops.elbo,
'test_kl_y': test_ops.kl_y,
'test_kl_z': test_ops.kl_z,
'test_confusion': test_ops.confusion
}
to_log = ['train_batch_purity']
to_log_eval = ['test_purity', 'test_ELBO', 'test_kl_y', 'test_kl_z']
if valid_data is not None:
to_log_eval += ['valid_ELBO', 'valid_purity']
if train_supervised:
# Track supervised losses, train on supervised loss.
ops_to_run.update({
'train_ELBO_supervised': train_ops.elbo_supervised,
'train_log_p_x_supervised': train_ops.log_p_x_supervised,
'train_kl_y_supervised': train_ops.kl_y_supervised,
'train_kl_z_supervised': train_ops.kl_z_supervised,
'train_ll_supervised': train_ops.ll_supervised
})
default_train_step = train_step_supervised
to_log += [
'train_ELBO_supervised', 'train_log_p_x_supervised',
'train_kl_y_supervised', 'train_kl_z_supervised'
]
else:
# Track unsupervised losses, train on unsupervised loss.
ops_to_run.update({
'train_ELBO': train_ops.elbo,
'train_kl_y': train_ops.kl_y,
'train_kl_z': train_ops.kl_z,
'train_ll': train_ops.ll
})
default_train_step = train_step
to_log += ['train_ELBO', 'train_kl_y', 'train_kl_z']
with tf.train.SingularMonitoredSession() as sess:
for step in range(n_steps):
feed_dict = {}
# Use the default training loss, but vary it each step depending on the
# training scenario (eg. for supervised gen replay, we alternate losses)
ops_to_run['train_step'] = default_train_step
### 1) PERIODICALLY TAKE SNAPSHOTS FOR GENERATIVE REPLAY ###
if (gen_refresh_period and step % gen_refresh_period == 0 and
gen_every_n > 0):
# First, increment cumulative count and reset recent probs count.
cumulative_component_counts += recent_component_counts
recent_component_counts = np.zeros(n_y)
# Generate enough samples for the rest of the next period
# (Functionally equivalent to storing and sampling from the model).
gen_buffer_images, gen_buffer_labels = get_generated_data(
sess=sess,
gen_op=gen_samples,
y_input=y_gen,
gen_buffer_size=gen_buffer_size,
component_counts=cumulative_component_counts)
### 2) DECIDE WHICH DATA SOURCE TO USE (GENERATIVE OR REAL DATA) ###
periodic_refresh_started = (
gen_refresh_period and step >= gen_refresh_period)
refresh_on_expansion_started = (gen_refresh_on_expansion and has_expanded)
if ((periodic_refresh_started or refresh_on_expansion_started) and
gen_every_n > 0 and step % gen_every_n == 1):
# Use generated data for the training batch
used_real_data = False
s = gen_buffer_ind * batch_size
e = (gen_buffer_ind + 1) * batch_size
gen_data_array = {
'image': gen_buffer_images[s:e],
'label': gen_buffer_labels[s:e]
}
gen_buffer_ind = (gen_buffer_ind + 1) % gen_buffer_size
# Feed it as x_train because it's already reshaped and binarized.
feed_dict.update({
x_train: gen_data_array['image'],
label_train: gen_data_array['label']
})
if use_supervised_replay:
# Convert label to one-hot before feeding in.
gen_label_onehot = np.eye(n_y)[gen_data_array['label']]
feed_dict.update({model_train.y_label: gen_label_onehot})
ops_to_run['train_step'] = train_step_supervised
else:
# Else use the standard training data sources.
used_real_data = True
# Select appropriate data source for iid or sequential setup.
if training_data_type == 'sequential':
current_data_period = int(
min(step / n_steps_per_class, len(train_data) - 1))
# If training supervised, set n_y_active directly based on how many
# classes have been seen
if train_supervised:
assert not dynamic_expansion
n_y_active_np = n_concurrent_classes * (
current_data_period // n_concurrent_classes +1)
n_y_active.load(n_y_active_np, sess)
train_data_array = sess.run(train_data[current_data_period])
# If we are blending classes, figure out where we are in the data
# period and add some fraction of other samples.
if blend_classes:
# If in the first quarter, blend in examples from the previous class
if (step % n_steps_per_class < n_steps_per_class / 4 and
current_data_period > 0):
other_train_data_array = sess.run(
train_data[current_data_period - 1])
num_other = int(
(n_steps_per_class / 2 - 2 *
(step % n_steps_per_class)) * batch_size / n_steps_per_class)
other_inds = np.random.permutation(batch_size)[:num_other]
train_data_array[image_key][:num_other] = other_train_data_array[
image_key][other_inds]
train_data_array[label_key][:num_other] = other_train_data_array[
label_key][other_inds]
# If in the last quarter, blend in examples from the next class
elif (step % n_steps_per_class > 3 * n_steps_per_class / 4 and
current_data_period < n_classes - 1):
other_train_data_array = sess.run(train_data[current_data_period +
1])
num_other = int(
(2 * (step % n_steps_per_class) - 3 * n_steps_per_class / 2) *
batch_size / n_steps_per_class)
other_inds = np.random.permutation(batch_size)[:num_other]
train_data_array[image_key][:num_other] = other_train_data_array[
image_key][other_inds]
train_data_array['label'][:num_other] = other_train_data_array[
label_key][other_inds]
# Otherwise, just use the current class
else:
train_data_array = sess.run(train_data)
feed_dict.update({
x_train_raw: train_data_array[image_key],
label_train: train_data_array[label_key]
})
### 3) PERFORM A GRADIENT STEP ###
results = sess.run(ops_to_run, feed_dict=feed_dict)
del results['train_step']
### 4) COMPUTE ADDITIONAL DIAGNOSTIC OPS ON VALIDATION/TEST SETS. ###
if (step+1) % report_interval == 0:
if valid_data is not None:
logging.info('Evaluating on validation and test set!')
proc_ops = {
k: (np.sum if 'confusion' in k
else np.mean) for k in valid_ops_to_run
}
results.update(
process_dataset(
dataset_ops.valid_iter,
valid_ops_to_run,
sess,
feed_dict=feed_dict,
processing_ops=proc_ops))
results['valid_purity'] = compute_purity(results['valid_confusion'])