forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_network.py
182 lines (146 loc) · 6.82 KB
/
graph_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Graph network implementation accompanying ICML 2020 submission.
"Learning to Simulate Complex Physics with Graph Networks"
Alvaro Sanchez-Gonzalez*, Jonathan Godwin*, Tobias Pfaff*, Rex Ying,
Jure Leskovec, Peter W. Battaglia
https://arxiv.org/abs/2002.09405
The Sonnet `EncodeProcessDecode` module provided here implements the learnable
parts of the model.
It assumes an encoder preprocessor has already built a graph with
connectivity and features as described in the paper, with features normalized
to zero-mean unit-variance.
Dependencies include Tensorflow 1.x, Sonnet 1.x and the Graph Nets 1.1 library.
"""
from typing import Callable
import graph_nets as gn
import sonnet as snt
import tensorflow as tf
Reducer = Callable[[tf.Tensor, tf.Tensor, tf.Tensor], tf.Tensor]
def build_mlp(
hidden_size: int, num_hidden_layers: int, output_size: int) -> snt.Module:
"""Builds an MLP."""
return snt.nets.MLP(
output_sizes=[hidden_size] * num_hidden_layers + [output_size]) # pytype: disable=bad-return-type # gen-stub-imports
class EncodeProcessDecode(snt.AbstractModule):
"""Encode-Process-Decode function approximator for learnable simulator."""
def __init__(
self,
latent_size: int,
mlp_hidden_size: int,
mlp_num_hidden_layers: int,
num_message_passing_steps: int,
output_size: int,
reducer: Reducer = tf.math.unsorted_segment_sum,
name: str = "EncodeProcessDecode"):
"""Inits the model.
Args:
latent_size: Size of the node and edge latent representations.
mlp_hidden_size: Hidden layer size for all MLPs.
mlp_num_hidden_layers: Number of hidden layers in all MLPs.
num_message_passing_steps: Number of message passing steps.
output_size: Output size of the decode node representations as required
by the downstream update function.
reducer: Reduction to be used when aggregating the edges in the nodes in
the interaction network. This should be a callable whose signature
matches tf.math.unsorted_segment_sum.
name: Name of the model.
"""
super().__init__(name=name)
self._latent_size = latent_size
self._mlp_hidden_size = mlp_hidden_size
self._mlp_num_hidden_layers = mlp_num_hidden_layers
self._num_message_passing_steps = num_message_passing_steps
self._output_size = output_size
self._reducer = reducer
with self._enter_variable_scope():
self._networks_builder()
def _build(self, input_graph: gn.graphs.GraphsTuple) -> tf.Tensor:
"""Forward pass of the learnable dynamics model."""
# Encode the input_graph.
latent_graph_0 = self._encode(input_graph)
# Do `m` message passing steps in the latent graphs.
latent_graph_m = self._process(latent_graph_0)
# Decode from the last latent graph.
return self._decode(latent_graph_m)
def _networks_builder(self):
"""Builds the networks."""
def build_mlp_with_layer_norm():
mlp = build_mlp(
hidden_size=self._mlp_hidden_size,
num_hidden_layers=self._mlp_num_hidden_layers,
output_size=self._latent_size)
return snt.Sequential([mlp, snt.LayerNorm()])
# The encoder graph network independently encodes edge and node features.
encoder_kwargs = dict(
edge_model_fn=build_mlp_with_layer_norm,
node_model_fn=build_mlp_with_layer_norm)
self._encoder_network = gn.modules.GraphIndependent(**encoder_kwargs)
# Create `num_message_passing_steps` graph networks with unshared parameters
# that update the node and edge latent features.
# Note that we can use `modules.InteractionNetwork` because
# it also outputs the messages as updated edge latent features.
self._processor_networks = []
for _ in range(self._num_message_passing_steps):
self._processor_networks.append(
gn.modules.InteractionNetwork(
edge_model_fn=build_mlp_with_layer_norm,
node_model_fn=build_mlp_with_layer_norm,
reducer=self._reducer))
# The decoder MLP decodes node latent features into the output size.
self._decoder_network = build_mlp(
hidden_size=self._mlp_hidden_size,
num_hidden_layers=self._mlp_num_hidden_layers,
output_size=self._output_size)
def _encode(
self, input_graph: gn.graphs.GraphsTuple) -> gn.graphs.GraphsTuple:
"""Encodes the input graph features into a latent graph."""
# Copy the globals to all of the nodes, if applicable.
if input_graph.globals is not None:
broadcasted_globals = gn.blocks.broadcast_globals_to_nodes(input_graph)
input_graph = input_graph.replace(
nodes=tf.concat([input_graph.nodes, broadcasted_globals], axis=-1),
globals=None)
# Encode the node and edge features.
latent_graph_0 = self._encoder_network(input_graph)
return latent_graph_0
def _process(
self, latent_graph_0: gn.graphs.GraphsTuple) -> gn.graphs.GraphsTuple:
"""Processes the latent graph with several steps of message passing."""
# Do `m` message passing steps in the latent graphs.
# (In the shared parameters case, just reuse the same `processor_network`)
latent_graph_prev_k = latent_graph_0
latent_graph_k = latent_graph_0
for processor_network_k in self._processor_networks:
latent_graph_k = self._process_step(
processor_network_k, latent_graph_prev_k)
latent_graph_prev_k = latent_graph_k
latent_graph_m = latent_graph_k
return latent_graph_m
def _process_step(
self, processor_network_k: snt.Module,
latent_graph_prev_k: gn.graphs.GraphsTuple) -> gn.graphs.GraphsTuple:
"""Single step of message passing with node/edge residual connections."""
# One step of message passing.
latent_graph_k = processor_network_k(latent_graph_prev_k)
# Add residuals.
latent_graph_k = latent_graph_k.replace(
nodes=latent_graph_k.nodes+latent_graph_prev_k.nodes,
edges=latent_graph_k.edges+latent_graph_prev_k.edges)
return latent_graph_k
def _decode(self, latent_graph: gn.graphs.GraphsTuple) -> tf.Tensor:
"""Decodes from the latent graph."""
return self._decoder_network(latent_graph.nodes)