forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathone_shot_streetlearn.py
265 lines (234 loc) · 9.28 KB
/
one_shot_streetlearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""One-shot StreetLearn environment."""
import dm_env
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
def deg_to_rad(x):
"""Convert degrees to radians."""
return x / 180. * np.pi
def rad_to_deg(x):
"""Convert radians to degrees."""
return x * 180. / np.pi
class OneShotStreetLearn(dm_env.Environment):
"""One-shot Streetlearn environment."""
ACTION_NAMES = [
'Forward',
'Left',
'Right',
'Collect',
]
NUM_ACTIONS = len(ACTION_NAMES)
def __init__(self, dataset_path, max_episode_steps, num_junctions=8,
target_reward=1., per_step_reward=0., observation_length=60,
seed=None):
self._graph = nx.read_gexf(dataset_path)
self._node_attrs = self._graph.nodes(data=True)
self._num_junctions = num_junctions
self._observation_length = observation_length
self._max_episode_steps = max_episode_steps
self._target_reward = target_reward
self._per_step_reward = per_step_reward
self._rng = np.random.RandomState(seed)
self.reset()
def reset(self):
self._previous_action = ''
self._episode_reward = 0.
self._episode_steps = 0
self._needs_reset = False
self._subgraph = self.get_random_subgraph()
self._observation_map = self.randomize_observations(self._subgraph)
self._position = self._rng.choice(list(self._subgraph.nodes()))
neighbours = self._neighbors_bearings(self._subgraph, self._position)
self._neighbour = neighbours[self._rng.randint(len(neighbours))]
self._set_new_goal()
return dm_env.restart(self._observation())
@property
def _current_edge(self):
return (self._position, self._neighbour['neighbour'])
def _set_new_goal(self):
goal = None
edges = list(self._observation_map.keys())
while goal is None or goal == self._current_edge:
goal = edges[self._rng.randint(len(edges))]
self._goal = goal
def _one_hot(self, edge):
one_hot_vector = np.zeros([self._observation_length], dtype=np.int32)
one_hot_vector[self._observation_map[edge]] = 1
return one_hot_vector
def _observation(self):
return {
'position': np.array(self._one_hot(self._current_edge), dtype=np.int32),
'goal': np.array(self._one_hot(self._goal), dtype=np.int32),
}
def observation_spec(self):
return {
'position': dm_env.specs.Array(
shape=(self._observation_length,), dtype=np.int32, name='position'),
'goal': dm_env.specs.Array(
shape=(self._observation_length,), dtype=np.int32, name='goal'),
}
def action_spec(self):
return dm_env.specs.DiscreteArray(self.NUM_ACTIONS)
def step(self, action):
# If previous step was the last step of an episode, reset.
if self._needs_reset:
return self.reset()
# Increment step count and check if it's the last step of the episode.
self._episode_steps += 1
if self._episode_steps >= self._max_episode_steps:
self._needs_reset = True
transition = dm_env.termination
else:
transition = dm_env.transition
# Recompute agent's position
self._move(action)
self._previous_action = self.ACTION_NAMES[action]
# Get reward if agent is at the goal location and the selected action is
# `collect`.
if (self._current_edge == self._goal and
self.ACTION_NAMES[action] == 'Collect'):
reward = self._target_reward
self._set_new_goal()
else:
reward = self._per_step_reward
self._episode_reward += reward
return transition(reward, self._observation())
def randomize_observations(self, subgraph):
edges = list(subgraph.edges())
edges.extend([(y, x) for (x, y) in edges])
obs_permutation = self._rng.permutation(self._observation_length)
return {e: obs_permutation[i] for i, e in enumerate(edges)}
def _calculate_bearing(self, node, neighbor):
lat1 = deg_to_rad(self._node_attrs[node]['lat'])
lng1 = deg_to_rad(self._node_attrs[node]['lng'])
lat2 = deg_to_rad(self._node_attrs[neighbor]['lat'])
lng2 = deg_to_rad(self._node_attrs[neighbor]['lng'])
delta_lng = lng2 - lng1
theta = np.arctan2(
np.sin(delta_lng) * np.cos(lat2),
np.cos(lat1) * np.sin(lat2) -
np.sin(lat1) * np.cos(lat2) * np.cos(delta_lng))
return theta
def _neighbors_bearings(self, subgraph, node):
bearings = []
for neighbor in list(subgraph[node]):
orientation = self._calculate_bearing(node, neighbor)
bearings.append({'neighbour': neighbor, 'orientation': orientation})
bearings.sort(key=lambda x: x['orientation'])
return bearings
def _sort_neighbors(self, node, neighbour):
bearings = self._neighbors_bearings(self._subgraph, node)
bs = [x['orientation'] for x in bearings]
idx = np.argmin(np.abs(bs - neighbour['orientation']))
return {
'forward': bearings[idx],
'right': bearings[idx-1],
'left': bearings[(idx+1) % len(bearings)],
}
def _move(self, action):
neighbours = self._sort_neighbors(self._position, self._neighbour)
if action == 0:
new_node = self._neighbour['neighbour']
neighbours = self._sort_neighbors(new_node, neighbours['forward'])
new_neighbour = neighbours['forward']
else:
new_node = self._position
if action == 1:
new_neighbour = neighbours['left']
elif action == 2:
new_neighbour = neighbours['right']
else:
new_neighbour = self._neighbour
self._position = new_node
self._neighbour = new_neighbour
def _all_next_junctions(self, subgraph, node):
neighbors = list(subgraph[node])
edges = [self._get_next_junction(subgraph, node, nb) for nb in neighbors]
nodes = [y for (_, y) in edges]
return nodes, edges
def _get_next_junction(self, subgraph, initial_node, next_node):
node = initial_node
while subgraph.degree(next_node) == 2:
neighbours = list(subgraph.neighbors(next_node))
neighbours.remove(node)
node = next_node
next_node = neighbours.pop()
return (initial_node, next_node)
def get_random_subgraph(self):
graph = self._graph
num_nodes = len(graph)
rnd_index = self._rng.randint(num_nodes)
center_node = list(graph.nodes())[rnd_index]
while graph.degree(center_node) <= 2:
rnd_index = self._rng.randint(num_nodes)
center_node = list(graph.nodes())[rnd_index]
to_visit = [center_node]
visited = []
subgraph = nx.Graph()
while to_visit:
node = to_visit.pop(0)
visited.append(node)
new_nodes, new_edges = self._all_next_junctions(graph, node)
subgraph.add_edges_from(new_edges)
node_degrees = [subgraph.degree(n) for n in subgraph.nodes()]
count_junctions = len(list(filter(lambda x: x > 2, node_degrees)))
if count_junctions >= self._num_junctions:
break
new_nodes = filter(lambda x: x not in visited + to_visit, new_nodes)
to_visit.extend(new_nodes)
return subgraph
def draw_subgraph(self, ax=None):
if ax is None:
_ = plt.figure(figsize=(3, 3))
ax = plt.gca()
node_ids = list(self._subgraph.nodes())
pos = {
x: (self._node_attrs[x]['lat'], self._node_attrs[x]['lng'])
for x in node_ids
}
labels = {}
nc = 'pink'
ec = 'black'
ns = 50
nshape = 'o'
# Draw the current subgraph
nx.draw(self._subgraph, pos=pos, node_color=nc, with_labels=False,
node_size=ns, labels=labels, edgecolors=ec, node_shape=nshape,
ax=ax)
max_xy = np.array([np.array(x) for x in pos.values()]).max(0)
min_xy = np.array([np.array(x) for x in pos.values()]).min(0)
delta_xy = (max_xy - min_xy) / 6.
ax.set_xlim([min_xy[0] - delta_xy[0], max_xy[0] + delta_xy[0]])
ax.set_ylim([min_xy[1] - delta_xy[1], max_xy[1] + delta_xy[1]])
# Draw goal position and orientation
x = self._node_attrs[self._goal[0]]['lat']
y = self._node_attrs[self._goal[0]]['lng']
rotation = rad_to_deg(self._calculate_bearing(*self._goal))
_ = ax.plot(x, y, marker=(3, 0, rotation - 90), color=(0, 0, 0),
markersize=14, markerfacecolor='white')
_ = ax.plot(x, y, marker=(2, 0, rotation - 90), color=(0, 0, 0),
markersize=12, markerfacecolor='None')
# Draw current position and orientation
x = self._node_attrs[self._position]['lat']
y = self._node_attrs[self._position]['lng']
rotation = rad_to_deg(self._neighbour['orientation'])
_ = ax.plot(x, y, marker=(3, 0, rotation - 90), color=(0, 0, 0),
markersize=14, markerfacecolor='lightgreen')
_ = ax.plot(x, y, marker=(2, 0, rotation - 90), color=(0, 0, 0),
markersize=12, markerfacecolor='None')
ax.set_title('{}\nEpisode reward = {}'.format(
self._previous_action, self._episode_reward))
return plt.gcf(), ax