forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory.py
293 lines (234 loc) · 11.1 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# pylint: disable=g-bad-file-header
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Memory Reader/Writer for RMA."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import sonnet as snt
import tensorflow.compat.v1 as tf
ReadInformation = collections.namedtuple(
'ReadInformation', ('weights', 'indices', 'keys', 'strengths'))
class MemoryWriter(snt.RNNCore):
"""Memory Writer Module."""
def __init__(self, mem_shape, name='memory_writer'):
"""Initializes the `MemoryWriter`.
Args:
mem_shape: The shape of the memory `(num_rows, memory_width)`.
name: The name to use for the Sonnet module.
"""
super(MemoryWriter, self).__init__(name=name)
self._mem_shape = mem_shape
def _build(self, inputs, state):
"""Inserts z into the argmin row of usage markers and updates all rows.
Returns an operation that, when executed, correctly updates the internal
state and usage markers.
Args:
inputs: A tuple consisting of:
* z, the value to write at this timestep
* mem_state, the state of the memory at this timestep before writing
state: The state is just the write_counter.
Returns:
A tuple of the new memory state and a tuple containing the next state.
"""
z, mem_state = inputs
# Stop gradient on writes to memory.
z = tf.stop_gradient(z)
prev_write_counter = state
new_row_value = z
# Find the index to insert the next row into.
num_mem_rows = self._mem_shape[0]
write_index = tf.cast(prev_write_counter, dtype=tf.int32) % num_mem_rows
one_hot_row = tf.one_hot(write_index, num_mem_rows)
write_counter = prev_write_counter + 1
# Insert state variable to new row.
# First you need to size it up to the full size.
insert_new_row = lambda mem, o_hot, z: mem - (o_hot * mem) + (o_hot * z)
new_mem = insert_new_row(mem_state,
tf.expand_dims(one_hot_row, axis=-1),
tf.expand_dims(new_row_value, axis=-2))
new_state = write_counter
return new_mem, new_state
@property
def state_size(self):
"""Returns a description of the state size, without batch dimension."""
return tf.TensorShape([])
@property
def output_size(self):
"""Returns a description of the output size, without batch dimension."""
return self._mem_shape
class MemoryReader(snt.AbstractModule):
"""Memory Reader Module."""
def __init__(self,
memory_word_size,
num_read_heads,
top_k=0,
memory_size=None,
name='memory_reader'):
"""Initializes the `MemoryReader`.
Args:
memory_word_size: The dimension of the 1-D read keys this memory reader
should produce. Each row of the memory is of length `memory_word_size`.
num_read_heads: The number of reads to perform.
top_k: Softmax and summation when reading is only over top k most similar
entries in memory. top_k=0 (default) means dense reads, i.e. no top_k.
memory_size: Number of rows in memory.
name: The name for this Sonnet module.
"""
super(MemoryReader, self).__init__(name=name)
self._memory_word_size = memory_word_size
self._num_read_heads = num_read_heads
self._top_k = top_k
# This is not an RNNCore but it is useful to expose the output size.
self._output_size = num_read_heads * memory_word_size
num_read_weights = top_k if top_k > 0 else memory_size
self._read_info_size = ReadInformation(
weights=tf.TensorShape([num_read_heads, num_read_weights]),
indices=tf.TensorShape([num_read_heads, num_read_weights]),
keys=tf.TensorShape([num_read_heads, memory_word_size]),
strengths=tf.TensorShape([num_read_heads]),
)
with self._enter_variable_scope():
# Transforms to value-based read for each read head.
output_dim = (memory_word_size + 1) * num_read_heads
self._keys_and_read_strengths_generator = snt.Linear(output_dim)
def _build(self, inputs):
"""Looks up rows in memory.
In the args list, we have the following conventions:
B: batch size
M: number of slots in a row of the memory matrix
R: number of rows in the memory matrix
H: number of read heads in the memory controller
Args:
inputs: A tuple of
* read_inputs, a tensor of shape [B, ...] that will be flattened and
passed through a linear layer to get read keys/read_strengths for
each head.
* mem_state, the primary memory tensor. Of shape [B, R, M].
Returns:
The read from the memory (concatenated across read heads) and read
information.
"""
# Assert input shapes are compatible and separate inputs.
_assert_compatible_memory_reader_input(inputs)
read_inputs, mem_state = inputs
# Determine the read weightings for each key.
flat_outputs = self._keys_and_read_strengths_generator(
snt.BatchFlatten()(read_inputs))
# Separate the read_strengths from the rest of the weightings.
h = self._num_read_heads
flat_keys = flat_outputs[:, :-h]
read_strengths = tf.nn.softplus(flat_outputs[:, -h:])
# Reshape the weights.
read_shape = (self._num_read_heads, self._memory_word_size)
read_keys = snt.BatchReshape(read_shape)(flat_keys)
# Read from memory.
memory_reads, read_weights, read_indices, read_strengths = (
read_from_memory(read_keys, read_strengths, mem_state, self._top_k))
concatenated_reads = snt.BatchFlatten()(memory_reads)
return concatenated_reads, ReadInformation(
weights=read_weights,
indices=read_indices,
keys=read_keys,
strengths=read_strengths)
@property
def output_size(self):
"""Returns a description of the output size, without batch dimension."""
return self._output_size, self._read_info_size
def read_from_memory(read_keys, read_strengths, mem_state, top_k):
"""Function for cosine similarity content based reading from memory matrix.
In the args list, we have the following conventions:
B: batch size
M: number of slots in a row of the memory matrix
R: number of rows in the memory matrix
H: number of read heads (of the controller or the policy)
K: top_k if top_k>0
Args:
read_keys: the read keys of shape [B, H, M].
read_strengths: the coefficients used to compute the normalised weighting
vector of shape [B, H].
mem_state: the primary memory tensor. Of shape [B, R, M].
top_k: only use top k read matches, other reads do not go into softmax and
are zeroed out in the output. top_k=0 (default) means use dense reads.
Returns:
The memory reads [B, H, M], read weights [B, H, top k], read indices
[B, H, top k], and read strengths [B, H, 1].
"""
_assert_compatible_read_from_memory_inputs(read_keys, read_strengths,
mem_state)
batch_size = read_keys.shape[0]
num_read_heads = read_keys.shape[1]
with tf.name_scope('memory_reading'):
# Scale such that all rows are L2-unit vectors, for memory and read query.
scaled_read_keys = tf.math.l2_normalize(read_keys, axis=-1) # [B, H, M]
scaled_mem = tf.math.l2_normalize(mem_state, axis=-1) # [B, R, M]
# The cosine distance is then their dot product.
# Find the cosine distance between each read head and each row of memory.
cosine_distances = tf.matmul(
scaled_read_keys, scaled_mem, transpose_b=True) # [B, H, R]
# The rank must match cosine_distances for broadcasting to work.
read_strengths = tf.expand_dims(read_strengths, axis=-1) # [B, H, 1]
weighted_distances = read_strengths * cosine_distances # [B, H, R]
if top_k:
# Get top k indices (row indices with top k largest weighted distances).
top_k_output = tf.nn.top_k(weighted_distances, top_k, sorted=False)
read_indices = top_k_output.indices # [B, H, K]
# Create a sub-memory for each read head with only the top k rows.
# Each batch_gather is [B, K, M] and the list stacks to [B, H, K, M].
topk_mem_per_head = [tf.batch_gather(mem_state, ri_this_head)
for ri_this_head in tf.unstack(read_indices, axis=1)]
topk_mem = tf.stack(topk_mem_per_head, axis=1) # [B, H, K, M]
topk_scaled_mem = tf.math.l2_normalize(topk_mem, axis=-1) # [B, H, K, M]
# Calculate read weights for each head's top k sub-memory.
expanded_scaled_read_keys = tf.expand_dims(
scaled_read_keys, axis=2) # [B, H, 1, M]
topk_cosine_distances = tf.reduce_sum(
expanded_scaled_read_keys * topk_scaled_mem, axis=-1) # [B, H, K]
topk_weighted_distances = (
read_strengths * topk_cosine_distances) # [B, H, K]
read_weights = tf.nn.softmax(
topk_weighted_distances, axis=-1) # [B, H, K]
# For each head, read using the sub-memories and corresponding weights.
expanded_weights = tf.expand_dims(read_weights, axis=-1) # [B, H, K, 1]
memory_reads = tf.reduce_sum(
expanded_weights * topk_mem, axis=2) # [B, H, M]
else:
read_weights = tf.nn.softmax(weighted_distances, axis=-1)
num_rows_memory = mem_state.shape[1]
all_indices = tf.range(num_rows_memory, dtype=tf.int32)
all_indices = tf.reshape(all_indices, [1, 1, num_rows_memory])
read_indices = tf.tile(all_indices, [batch_size, num_read_heads, 1])
# This is the actual memory access.
# Note that matmul automatically batch applies for us.
memory_reads = tf.matmul(read_weights, mem_state)
read_keys.shape.assert_is_compatible_with(memory_reads.shape)
read_strengths = tf.squeeze(read_strengths, axis=-1) # [B, H, 1] -> [B, H]
return memory_reads, read_weights, read_indices, read_strengths
def _assert_compatible_read_from_memory_inputs(read_keys, read_strengths,
mem_state):
read_keys.shape.assert_has_rank(3)
b_shape, h_shape, m_shape = read_keys.shape
mem_state.shape.assert_has_rank(3)
r_shape = mem_state.shape[1]
read_strengths.shape.assert_is_compatible_with(
tf.TensorShape([b_shape, h_shape]))
mem_state.shape.assert_is_compatible_with(
tf.TensorShape([b_shape, r_shape, m_shape]))
def _assert_compatible_memory_reader_input(input_tensors):
"""Asserts MemoryReader's _build has been given the correct shapes."""
assert len(input_tensors) == 2
_, mem_state = input_tensors
mem_state.shape.assert_has_rank(3)