-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_geolrm.py
186 lines (151 loc) · 6.66 KB
/
run_geolrm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (C) 2024-present Yuanjing Shengsheng (Beijing) Technology Co., Ltd. All rights reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details].
import os
import argparse
import cv2
import numpy as np
import torch
from tqdm import tqdm
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from tqdm import tqdm
from src.geolrm_wrapper import GeoLRM
from src.utils.camera_util import (
FOV_to_intrinsics,
get_sv3d_input_cameras,
get_circular_camera_poses,
)
from src.utils.infer_util import save_video
def get_render_cameras(batch_size=1, M=120, radius=1.5, elevation=20.0):
"""
Get the rendering camera parameters.
"""
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
Ks = FOV_to_intrinsics(39.6).unsqueeze(0).repeat(M, 1, 1).float()
c2ws = c2ws[None].repeat(batch_size, 1, 1, 1)
Ks = Ks[None].repeat(batch_size, 1, 1, 1)
return c2ws, Ks
###############################################################################
# Arguments.
###############################################################################
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('input_path', type=str, help='Path to input image or directory.')
parser.add_argument('--output_path', type=str, default='outputs/', help='Output directory.')
parser.add_argument('--diffusion_steps', type=int, default=75, help='Denoising Sampling steps.')
parser.add_argument('--seed', type=int, default=42, help='Random seed for sampling.')
parser.add_argument('--scale', type=float, default=1.0, help='Scale of generated object.')
parser.add_argument('--distance', type=float, default=1.5, help='Render distance.')
parser.add_argument('--view', type=int, default=21, help='Number of input views.')
parser.add_argument('--no_rembg', action='store_true', help='Do not remove input background.')
# parser.add_argument('--export_mesh', action='store_true', help='Export a mesh.')
args = parser.parse_args()
seed_everything(args.seed)
###############################################################################
# Stage 0: Configuration.
###############################################################################
config = OmegaConf.load(args.config)
config_name = os.path.basename(args.config).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
device = torch.device('cuda')
# load reconstruction model
print('Loading reconstruction model ...')
model = GeoLRM(**model_config['params'])
model = model.to(device)
model = model.eval()
# make output directories
image_path = os.path.join(args.output_path, config_name, 'images')
mesh_path = os.path.join(args.output_path, config_name, 'meshes')
gauss_path = os.path.join(args.output_path, config_name, 'gaussians')
video_path = os.path.join(args.output_path, config_name, 'videos')
os.makedirs(image_path, exist_ok=True)
os.makedirs(mesh_path, exist_ok=True)
os.makedirs(gauss_path, exist_ok=True)
os.makedirs(video_path, exist_ok=True)
# process input files
if os.path.isdir(args.input_path):
input_files = [
os.path.join(args.input_path, file)
for file in os.listdir(args.input_path)
if file.endswith('.mp4')
]
else:
input_files = [args.input_path]
print(f'Total number of input videos: {len(input_files)}')
###############################################################################
# Stage 1: Multiview generation.
###############################################################################
def video_to_tensor(video_path):
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
video_np = np.array(frames)
video_tensor = torch.from_numpy(video_np).permute(0, 3, 1, 2).float()
return video_tensor
outputs = []
for idx, video_file in enumerate(input_files):
name = os.path.basename(video_file).split('.')[0]
print(f'[{idx+1}/{len(input_files)}] Imagining {name} ...')
images = video_to_tensor(video_file).to(device) / 255.0
images = v2.functional.resize(images, 560, interpolation=3, antialias=True).clamp(0, 1)
print(f"Images shape: {images.shape}")
outputs.append({'name': name, 'images': images})
###############################################################################
# Stage 2: Reconstruction.
###############################################################################
for idx, sample in tqdm(enumerate(outputs)):
name = sample['name']
print(f'[{idx+1}/{len(outputs)}] Creating {name} ...')
images = sample['images'].unsqueeze(0).to(device)
images = v2.functional.resize(images, 560, interpolation=3, antialias=True).clamp(0, 1)
input_c2ws, input_Ks = get_sv3d_input_cameras(batch_size=1, radius=1.5*args.scale, return_org=True)
input_c2ws, input_Ks = input_c2ws.to(device)[None], input_Ks.to(device)[None]
step = 21 // args.view
indices = torch.arange(0, 21, step).long().to(device)
images = images[:, indices].contiguous().clone()
input_Ks = input_Ks[:, indices].contiguous().clone()
input_c2ws = input_c2ws[:, indices].contiguous().clone()
with torch.no_grad():
# get latents
xyzs, _ = model.serializer(images, input_c2ws, input_Ks)
latents = model.lrm_generator.forward_latents(xyzs, images, input_Ks, input_c2ws)
# get gaussians
gaussians = model.lrm_generator.renderer.get_gaussians(xyzs, latents)
model.lrm_generator.renderer.save_ply(gaussians, os.path.join(gauss_path, f'{name}.ply'))
# get video
video_path_idx = os.path.join(video_path, f'{name}.mp4')
render_size = infer_config.render_resolution
render_c2ws, render_Ks = get_render_cameras(
batch_size=1,
M=120,
radius=args.distance,
elevation=20.0
)
render_c2ws, render_Ks = render_c2ws.to(device), render_Ks.to(device)
# if args.export_mesh:
# mesh_path_idx = os.path.join(mesh_path, f'{name}.ply')
# model.lrm_generator.renderer.extract_mesh(
# gaussians[0],
# mesh_path_idx
# )
out = model.lrm_generator.renderer.render(
gaussians,
render_c2ws,
render_Ks,
render_size=render_size
)
frames = out["img"][0]
save_video(
frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")