-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathmodifier_torchvision_test.py
109 lines (81 loc) · 2.88 KB
/
modifier_torchvision_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import time
import torch
import os
import re
import gc
import unittest
from tinynn.graph.tracer import model_tracer
from tinynn.prune.oneshot_pruner import OneShotChannelPruner
from tinynn.util.util import import_from_path
from common_utils import collect_torchvision_models, prepare_inputs, IS_CI
def transform_output(output):
new_output = []
if type(output) in (list, tuple):
for i in output:
new_output.extend(transform_output(i))
else:
new_output.append(output.detach().numpy())
return new_output
BLACKLIST = (
'vit.*',
'maxvit.*',
'swin.*',
# test fails for shufflenet & inception_v3, see https://github.com/alibaba/TinyNeuralNetwork/issues/260
'shufflenet.*',
'inception_v3',
)
CI_BLACKLIST = (
'convnext.*',
'regnet_y_128gf',
)
class TestModelMeta(type):
@classmethod
def __prepare__(mcls, name, bases):
d = dict()
test_classes = collect_torchvision_models()
for test_class in test_classes:
test_name = f'test_torchvision_model_{test_class.__name__}'
d[test_name] = mcls.build_model_test(test_class)
return d
@classmethod
def build_model_test(cls, model_class):
def f(self):
model_name = model_class.__name__
for item in BLACKLIST:
if re.match(item, model_name):
raise unittest.SkipTest('IN BLACKLIST')
if IS_CI:
for item in CI_BLACKLIST:
if re.match(item, model_name):
raise unittest.SkipTest('IN CI BLACKLIST')
with model_tracer():
m = model_class()
m.eval()
print(f'\n---------prune {model_name} ing!---------\n')
inputs = prepare_inputs(m)
outputs = m(*inputs)
outputs = transform_output(outputs)
# prune
st = time.time()
pruner = OneShotChannelPruner(m, inputs, {"sparsity": 0.5, "metrics": "l2_norm"})
pruner.prune()
pruner.graph.generate_code('out/new_model.py', 'out/new_model.pth', 'new_model')
new_model = import_from_path('out.new_model', "out/new_model.py", "new_model")()
new_model.load_state_dict(torch.load('out/new_model.pth'))
print(f"[TEST] {model_name} cost {time.time() - st}")
new_model(*inputs)
# Remove the weights file to save space
os.unlink('out/new_model.pth')
if IS_CI:
# Lower memory usage
del inputs
del outputs
del pruner
del new_model
del m
gc.collect()
return f
class TestModel(unittest.TestCase, metaclass=TestModelMeta):
pass
if __name__ == '__main__':
unittest.main()