-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathgraph.py
770 lines (630 loc) · 30 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
import os
import queue
import typing
import warnings
import flatbuffers
import igraph as ig
from . import tflite as tfl
from .base import ExtendedOperator
from tinynn.util.util import get_logger
log = get_logger(__name__, 'INFO')
class CommonGraph(object):
graph: ig.Graph
tensor_map: typing.Dict[str, tfl.Tensor]
tensor_node_map: typing.Dict[str, str]
iterable_map: typing.Dict[str, typing.List[str]]
inputs: typing.List[str]
outputs: typing.List[str]
input_transpose: typing.List[bool]
output_transpose: typing.Union[typing.List[typing.Optional[bool]], typing.Optional[bool]]
node_op_counter: int
def __init__(self) -> None:
self.graph = ig.Graph(directed=True)
self.tensor_map = dict()
self.tensor_node_map = dict()
self.iterable_map = dict()
self.inputs = []
self.outputs = []
self.input_transpose = []
self.output_transpose = None
self.node_op_counter = 0
self.q_mapping = {}
self.rev_q_mapping = {}
self.transform_store = {}
self.constant_mapping = {}
def add_transform_store(self, tensor_name: str, transform_name: str, new_tensor_name: str):
self.transform_store.setdefault(tensor_name, {})
self.transform_store[tensor_name][transform_name] = new_tensor_name
def get_transform_store(self, tensor_name: str, transform_name: str) -> typing.Optional[tfl.Tensor]:
if tensor_name not in self.transform_store:
return None
return self.transform_store[tensor_name].get(transform_name, None)
def add_iterable_pair(
self, input_names: typing.List[str], output_names: typing.List[str], key: typing.Optional[str] = None
):
"""Adds the tensor mapping for a ListConstruct tensor
Args:
input_names (typing.List[str]): The names of the input tensors
output_names (typing.List[str]): The names of the output tensors
key (typing.Literal['input', 'output'], optional): Which side is used as key. Defaults to None.
"""
if key == 'input' or len(input_names) == 1 and len(output_names) > 1:
list_name = input_names[0]
self.iterable_map.setdefault(list_name, [])
self.iterable_map[list_name].extend(output_names)
elif key == 'output' or len(input_names) > 1 and len(output_names) == 1:
list_name = output_names[0]
self.iterable_map.setdefault(list_name, [])
self.iterable_map[list_name].extend(input_names)
else:
assert False, "You should specify key == 'input' or 'output'"
def has_nested_names(self, key: str) -> bool:
"""Whether a tensor has nested tensor (names)
Args:
key (str): The name of the tensor
Returns:
bool: Whether it is a ListConstruct tensor
"""
return key in self.iterable_map
def get_list_expanded_names(self, key: str) -> typing.List[str]:
"""Get the names of the nested tensors of a ListConstruct tensor
Args:
key (str): The name of the ListConstruct tensor
Returns:
typing.List[str]: The names of the nested tensors
"""
return self.iterable_map[key]
def check_tensor(self, name: str, node_type: ExtendedOperator, tensor: tfl.Tensor) -> ig.Vertex:
"""Checks whether the node with the tensor as the output already exists
Args:
name (str): The name of the tensor
node_type (ExtendedOperator): The type of the node
tensor (tfl.Tensor): The tensor
Returns:
ig.Vertex: The node that produces the tensor
"""
node_name = self.tensor_node_map[name]
node = self.graph.vs.find(name=node_name)
assert name in self.tensor_map, f"tensor {name} is in nodes map, but not in tensors map"
# assert node["node_type"] == node_type, f"tensor {name} already exists, but with a different type"
assert id(self.tensor_map[name]) == id(tensor), f"tensor {name} already exists"
return node
def add_nodes(
self, tensors: typing.List[tfl.Tensor], node_type=ExtendedOperator.CONSTANT_NODE
) -> typing.List[ig.Vertex]:
"""Add a list of nodes (usually special ones) with the tensors
Args:
tensors (typing.List[tfl.Tensor]): The output tensors of the nodes
node_type ([type], optional): The type of the node. Defaults to ExtendedOperator.CONSTANT_NODE.
Returns:
ig.Vertex: The newly-created nodes
"""
nodes = []
for t in tensors:
if node_type in (ExtendedOperator.OUTPUT_NODE, ExtendedOperator.UNUSED_NODE):
tensor_name = t.name + '_output'
if tensor_name in self.tensor_map:
i = 1
while True:
tensor_name = f'{t.name}_output_{i}'
if tensor_name in self.tensor_map:
i += 1
else:
break
else:
tensor_name = t.name
if tensor_name in self.tensor_node_map:
nodes.append(self.check_tensor(tensor_name, node_type, t))
else:
node = self.graph.add_vertex(
node_type=node_type,
outputs=[tensor_name],
label=ExtendedOperator(node_type).type_name(),
name=tensor_name,
)
self.tensor_map[tensor_name] = t
self.tensor_node_map[tensor_name] = node['name']
nodes.append(node)
return nodes
def add_node(self, tensors: typing.List[tfl.Tensor], tfl_op: tfl.BaseOperator, output_exists: bool = False):
"""Add a node (usually a op node) with the output tensors
Args:
tensors (typing.List[tfl.Tensor]): The output tensors of the node
tfl_op (tfl.BaseOperator): The op to be added
output_exists (bool, optional): Whether the output may already exists. Defaults to False.
Returns:
[type]: [description]
"""
output_names = [t.name for t in tfl_op.outputs]
node_unique_name = f'__tinynn_op_{self.node_op_counter}__'
self.node_op_counter += 1
if tfl_op.op.custom_code is not None:
node = self.graph.add_vertex(
node_type=tfl_op.op.code,
custom_type=tfl_op.op.custom_code,
outputs=output_names,
op=tfl_op,
label=tfl_op.type_name(),
name=node_unique_name,
)
else:
node = self.graph.add_vertex(
node_type=tfl_op.op.code,
outputs=output_names,
op=tfl_op,
label=tfl_op.type_name(),
name=node_unique_name,
)
log.debug(f'NEW VERTEX: {node["op"].type_name()}[{node["name"]}] {node["op"].inputs} -> {node["op"].outputs}')
for t in tensors:
if not output_exists:
assert (
t.name not in self.tensor_node_map
), f"output tensor ({t.name}) should not be in the nodes map at this time"
self.tensor_map[t.name] = t
else:
if t.name in self.tensor_map:
assert (
self.tensor_map[t.name] == t
), f"output tensor ({t.name}) has changed during graph reconstruction"
else:
log.debug(f'tensor node map add {t.name} during transformation')
self.tensor_map[t.name] = t
self.tensor_node_map[t.name] = node['name']
return node
def add_outputs(self, names: typing.List[str], node_type=ExtendedOperator.OUTPUT_NODE):
"""Add the output nodes with the names given
Args:
names (typing.List[str]): The names of the output nodes to be created
"""
if len(names) > 0:
output_tensors = list(map(lambda x: self.tensor_map[x], names))
output_nodes = self.add_nodes(output_tensors, node_type)
for idx, (name, output_node) in enumerate(zip(names, output_nodes)):
current_node = self.graph.vs.find(name=self.tensor_node_map[name])
edge = self.graph.add_edge(current_node, output_node, name=output_node["outputs"][0], label=name)
log.debug(
f'NEW EDGE: {current_node["label"]} -> {output_node["label"]} {self.tensor_map[edge["name"]]}'
)
def add_operator(self, tfl_op: tfl.BaseOperator, transform: bool = False):
"""Add a new operator to the graph
Args:
tfl_op (tfl.BaseOperator): The operator be added
transform (bool, optional): Whether it is created by a transformable node. Defaults to False.
"""
input_nodes = self.add_nodes(tfl_op.inputs)
current_node = self.add_node(tfl_op.outputs, tfl_op, transform)
for idx, input_node in enumerate(input_nodes):
edge = self.graph.add_edge(
input_node, current_node, name=tfl_op.inputs[idx].name, label=tfl_op.inputs[idx].name
)
log.debug(f'NEW EDGE: {input_node["label"]} -> {current_node["label"]} {self.tensor_map[edge["name"]]}')
output_names = set(self.outputs).intersection(set([t.name for t in tfl_op.outputs]))
self.add_outputs(output_names)
def try_restore_edges(self, mapping: typing.List[typing.Tuple[str, str]]):
"""Try to restore the edges between nodes
Args:
mapping (typing.List[typing.Tuple[str, str]]): A list of mapping (edge name, target node nam)
"""
for edge_name, node_name in mapping:
cand = self.graph.vs.select(name=node_name)
# Only restore when the node exists
if cand:
next_node = cand[0]
prev_node = self.graph.vs.find(name=self.tensor_node_map[edge_name])
edge = self.graph.add_edge(prev_node, next_node, name=edge_name, label=edge_name)
log.debug(f'NEW EDGE: {prev_node["label"]} -> {next_node["label"]} {self.tensor_map[edge["name"]]}')
def remove_operator_input(
self, node: ig.Vertex, input_idx: int, return_ids: bool = False, skip: int = 0
) -> typing.Optional[typing.List[int]]:
"""Remove an input tensor in a op node
Args:
node (ig.Vertex): An op node
input_idx (int): the index of the input tensor
return_ids (bool): Return the ids instead of removing the edges. Defaults to False.
skip (int): Number of items to skip
Returns:
typing.Optional[typing.List[int]]: The edges to be removed if return_ids is True, otherwise None
"""
old_tensor = node['op'].inputs[input_idx]
assert old_tensor.name in self.tensor_map
remove_edges = []
for edge in node.in_edges():
start = self.graph.vs[edge.source]
for i in range(len(start['outputs'])):
if start['outputs'][i] == old_tensor.name and edge['name'] == old_tensor.name:
if skip > 0:
skip -= 1
continue
remove_edges.append(edge.index)
break
if len(remove_edges) > 0:
break
if return_ids:
return remove_edges
else:
self.graph.delete_edges(remove_edges)
def replace_operator_input(
self, node: ig.Vertex, input_idx: int, new_tensor: tfl.Tensor, return_ids: bool = False, skip: int = 0
) -> typing.Optional[typing.List[int]]:
"""Use a new input tensor in a op node
Args:
node (ig.Vertex): An op node
input_idx (int): the index of the input tensor
new_tensor (tfl.Tensor): The tensor to be be used
return_ids (bool): Return the ids instead of removing the edges. Defaults to False.
skip (int): Number of items to skip
Returns:
typing.Optional[typing.List[int]]: The edges to be removed if return_ids is True, otherwise None
"""
remove_edges = self.remove_operator_input(node, input_idx, return_ids=True, skip=skip)
node['op'].inputs[input_idx] = new_tensor
new_node = self.add_nodes([new_tensor])[0]
edge = self.graph.add_edge(new_node, node, name=new_tensor.name, label=new_tensor.name)
log.debug(f'NEW EDGE: {new_node["label"]} -> {node["label"]} {self.tensor_map[edge["name"]]}')
if return_ids:
return remove_edges
else:
self.graph.delete_edges(remove_edges)
def append_operator_input(self, node: ig.Vertex, new_tensor: tfl.Tensor, as_intermediate: bool = False):
"""Add a new input tensor to a op node
Args:
node (ig.Vertex): An op node
new_tensor (tfl.Tensor): The tensor to be added
"""
if as_intermediate:
node['op'].intermediates.append(new_tensor)
else:
node['op'].inputs.append(new_tensor)
new_node = self.add_nodes([new_tensor])[0]
edge = self.graph.add_edge(new_node, node, name=new_tensor.name, label=new_tensor.name)
log.debug(f'NEW EDGE: {new_node["label"]} -> {node["label"]} {self.tensor_map[edge["name"]]}')
def remove_operator(self, tfl_op: tfl.BaseOperator):
tensor_edge = self.graph.es.find(name=tfl_op.outputs[0].name)
op_node = tensor_edge.source
self.graph.delete_vertices([op_node.index])
def remove_operators(self, tfl_ops: typing.List['tfl.BaseOperator']):
indices = []
for tfl_op in tfl_ops:
tensor_edge = self.graph.es.find(name=tfl_op.outputs[0].name)
op_node = tensor_edge.source
indices.append(op_node.index)
self.graph.delete_vertices(indices)
def connect_next_tensors(
self,
find_node: ig.Vertex,
connect_node: ig.Vertex,
tensor_name: str,
skips_nodes: typing.Optional[typing.List[str]] = None,
):
"""Add edges between `connect_node` and the next nodes of `find_node` with the name `tensor_name`
Args:
find_node ([ig.Vertex]): The node to search for next nodes
connect_node ([ig.Vertex]): The node to connect the next nodes with
tensor_name ([str]): The name of the edge (tensor)
skip_nodes ([typing.Optional[typing.List[str]]]): The name of the next nodes to skip
"""
for next_tensor in find_node.out_edges():
next_op = self.graph.vs[next_tensor.target]
if skips_nodes is not None and next_op['name'] in skips_nodes:
continue
if next_op['node_type'] not in (ExtendedOperator.OUTPUT_NODE, ExtendedOperator.UNUSED_NODE):
assert (
tensor_name == next_tensor['name']
), f'next tensor name mismatches: {tensor_name} vs {next_tensor["name"]}'
self.graph.add_edge(connect_node, next_op, name=tensor_name, label=tensor_name)
else:
assert next_tensor['name'].startswith(
tensor_name + '_output'
), f'output tensor and node name mismatches: {tensor_name} vs {next_tensor["name"]}'
self.graph.add_edge(connect_node, next_op, name=next_tensor['name'], label=tensor_name)
log.debug(f'NEW EDGE: {connect_node["label"]} -> {next_op["label"]} {self.tensor_map[next_tensor["name"]]}')
def replace_next_tensors(
self,
find_node: ig.Vertex,
connect_node: ig.Vertex,
tensor_name: str,
skips_nodes: typing.Optional[typing.List[str]] = None,
):
"""A variant of connect_next_tensors that also replace the tensors in the next nodes
Args:
find_node ([ig.Vertex]): The node to search for next nodes
connect_node ([ig.Vertex]): The node to connect the next nodes with
tensor_name ([str]): The name of the edge (tensor)
skip_nodes ([typing.Optional[typing.List[str]]]): The name of the next nodes to skip
"""
orig_name = find_node['outputs'][0]
for next_tensor in find_node.out_edges():
next_op = self.graph.vs[next_tensor.target]
if skips_nodes is not None and next_op['name'] in skips_nodes:
continue
if next_op['node_type'] != ExtendedOperator.OUTPUT_NODE:
assert (
orig_name == next_tensor['name']
), f'next tensor name mismatches: {tensor_name} vs {next_tensor["name"]}'
op = next_op['op']
for idx, t in enumerate(op.inputs):
if t.name == orig_name:
op.inputs[idx] = self.tensor_map[tensor_name]
self.graph.add_edge(connect_node, next_op, name=tensor_name, label=tensor_name)
else:
assert False, 'replace_next_tensors where last_node.next is an output node is not supported'
log.debug(f'NEW EDGE: {connect_node["label"]} -> {next_op["label"]} {self.tensor_map[next_tensor["name"]]}')
log.debug(f'{next_op["label"]} {next_op["op"].inputs} {next_op["op"].outputs}')
def visualize(self, hide_constants=True):
"""Plot the TinyNeuralNetwork graph
Args:
hide_constants (bool, optional): Hide constants in the plot. Defaults to True.
"""
self.check()
import matplotlib.pyplot as plt
_, axs = plt.subplots()
if hide_constants:
nodes = self.graph.vs.select(node_type_ne=ExtendedOperator.CONSTANT_NODE)
subgraph = self.graph.induced_subgraph(nodes)
else:
subgraph = self.graph
visual_style = {}
visual_style["vertex_label_size"] = 5
visual_style["vertex_label"] = subgraph.vs["outputs"]
visual_style["layout"] = "drl"
visual_style["bbox"] = (800, 800)
visual_style["margin"] = 20
ig.plot(subgraph, target=axs, **visual_style)
axs.axis("off")
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.show()
def check(self):
"""Checks whether the graph is in a good state"""
assert self.graph.is_dag(), "The graph is not a DAG"
assert self.graph.is_directed(), "The graph is not directed"
# For simple NNs, the following checks should also pass
# Unfortunately, it is hard to tell whether the NN is simple or not.
# assert self.graph.is_simple(), "The graph has multiple edges between at least one pair of nodes"
# assert self.graph.is_connected('weak'), "The graph is not connected"
def topological_sort(self) -> typing.List[int]:
"""Sort the graph topologically
Returns:
typing.List[int]: The sorted indices of the nodes
"""
# Emulating DFS with LifoQueue(stack)
q = queue.LifoQueue()
visited = set()
indices = []
# We push all inputs nodes to the target queue.
inputs = [v for v in self.graph.vs if v['node_type'] == ExtendedOperator.INPUT_NODE]
other_input_nodes = [v for v in self.graph.vs if v['node_type'] >= 0 and v.indegree() == 0]
# Constants are all known, so just marking them here.
constants = [v for v in self.graph.vs if v['node_type'] == ExtendedOperator.CONSTANT_NODE]
for c in constants:
indices.append(c.index)
visited.add(c.index)
for e in c.out_edges():
v = e.target_vertex
if v not in other_input_nodes:
skip = False
for e in v.in_edges():
if e.source not in visited:
skip = True
break
if skip:
continue
if v['node_type'] >= 0:
other_input_nodes.append(v)
else:
if v['node_type'] != ExtendedOperator.OUTPUT_NODE:
type_name = ExtendedOperator(v['node_type']).type_name()
log.warning(
f'The child node of a constant node is of type {type_name}, which is unexpected'
)
for v in other_input_nodes:
if v['node_type'] not in (
ExtendedOperator.ASSIGN_VARIABLE,
ExtendedOperator.READ_VARIABLE,
ExtendedOperator.RANDOM_STANDARD_NORMAL,
ExtendedOperator.MULTINOMIAL,
ExtendedOperator.RANDOM_UNIFORM,
):
output_name = v['outputs'][0]
type_name = v['op'].type_name()
log.warning(f'{type_name}({output_name}) is an orphaned node, which is unexpected')
for i in reversed(inputs + other_input_nodes):
q.put(i)
while not q.empty():
v = q.get()
# Skip if already visited
if v.index in visited:
continue
# Ensure all input nodes are visited
skip = False
for e in v.in_edges():
if e.source not in visited:
skip = True
break
if skip:
continue
# Mark visited if the previous constraints are met
visited.add(v.index)
indices.append(v.index)
# Push the out nodes to the target queue
for e in reversed(v.out_edges()):
q.put(e.target_vertex)
return indices
def collect_operators(
self, ops: typing.Optional[typing.List[tfl.BaseOperator]] = None
) -> typing.List[tfl.BaseOperator]:
"""Collect ops
Args:
ops (typing.Optional[typing.List[tfl.BaseOperator]], optional): TFLite operators. Defaults to None.
Returns:
typing.List[tfl.BaseOperator]: operators with the numbered index
"""
# We define our custom for figuring out a better order than using `self.graph.topological_sorting()`
if ops is None:
ids = self.topological_sort()
nodes = (self.graph.vs[idx] for idx in ids)
filtered_nodes = (node for node in nodes if node['node_type'] >= 0)
ops: typing.List[tfl.BaseOperator] = (x['op'] for x in filtered_nodes)
log.debug('Collecting operators...')
result = []
for idx, op in enumerate(ops):
log.debug(f'[{idx}] {op.type_name()} {op.inputs} -> {op.outputs}')
op.op.index = idx
op.tfl_inputs_idx = [x.index for x in op.inputs]
op.tfl_outputs_idx = [x.index for x in op.outputs]
op.tfl_intermediates_idx = [x.index for x in op.intermediates]
result.append(op)
return result
def collect_tensor_buffers(
self,
labels: typing.Set[str] = None,
inputs: typing.List[str] = None,
outputs: typing.List[str] = None,
tensor_map: typing.Dict[str, tfl.Tensor] = None,
) -> typing.Tuple[typing.List[tfl.Tensor], typing.List[tfl.Buffer], typing.List[int], typing.List[int]]:
""" Collect tensors, buffers and I/O indices
Args:
labels (typing.Set[str], optional): TFLite tensor names. Defaults to None.
inputs (typing.List[str], optional): Input tensor names. Defaults to None.
outputs (typing.List[str], optional): Output tensor names. Defaults to None.
tensor_map (typing.Dict[str, tfl.Tensor], optional): All tensors. Defaults to None.
Returns:
typing.Tuple[typing.List[tfl.Tensor], typing.List[tfl.Buffer], typing.List[int], typing.List[int]]: \
tensors, buffers with the numbered index and I/O indices
"""
if labels is None:
labels = set(self.graph.es['label'])
if inputs is None:
inputs = self.inputs
if outputs is None:
outputs = self.outputs
if tensor_map is None:
tensor_map = self.tensor_map
tensor_idx = 0
buffer_idx = 1
tensors = []
buffers = [tfl.Buffer(bytes(0))]
input_idx = [-1] * len(inputs)
output_idx = [-1] * len(outputs)
for label in labels:
tensor: tfl.Tensor = tensor_map[label]
if tensor.index != -1:
if tensor.is_variable:
tensor.buffer.index = 0
tensor.index = tensor_idx
tensor_idx += 1
tensors.append(tensor)
if tensor.buffer is not None and tensor.is_variable is False:
tensor.buffer.index = buffer_idx
buffer_idx += 1
buffers.append(tensor.buffer)
if label in inputs:
item_indices = [i for i, x in enumerate(inputs) if x == label]
for item_idx in item_indices:
input_idx[item_idx] = tensor.index
if label in outputs:
item_indices = [i for i, x in enumerate(outputs) if x == label]
for item_idx in item_indices:
output_idx[item_idx] = tensor.index
missing_inputs = [name for name, _ in filter(lambda x: x[1] < 0, zip(inputs, input_idx))]
missing_outputs = [name for name, _ in filter(lambda x: x[1] < 0, zip(outputs, output_idx))]
assert len(missing_outputs) == 0, f'Some output nodes are missing: {missing_outputs}'
if len(missing_inputs) != 0:
warnings.warn(f'Some input nodes are missing: {missing_inputs}, will try to add them into graph')
for name in missing_inputs:
tensor = self.tensor_map[name]
tensor.index = tensor_idx
tensor_idx += 1
tensors.append(tensor)
item_idx = inputs.index(name)
input_idx[item_idx] = tensor.index
return tensors, buffers, input_idx, output_idx
def convert(self, tflite_path: str):
"""Convert from the TinyNeuralNetwork Graph to the tflite model
Args:
tflite_path ([str]): Path of the generated tflite model
"""
# Collect multiple data to build a tflite model
tensors, buffers, input_idx, output_idx = self.collect_tensor_buffers()
ops = self.collect_operators()
# Construct the flatbuffer model
tflite_model = self.build_model(ops, tensors, buffers, input_idx, output_idx)
# Check output directory
tflite_dir = os.path.abspath(os.path.dirname(tflite_path))
os.makedirs(tflite_dir, exist_ok=True)
# Write to file
with open(tflite_path, 'wb') as f:
f.write(tflite_model)
full_ops = ops
orig_tflite_path = tflite_path
for v in self.graph.vs:
if v['op'] is None:
continue
orig_op = v['op'].extra_hints.get('orig_float', None)
if orig_op is None:
continue
dq_op = v['op']
op_dict: typing.Dict[str, tfl.BaseOperator] = {'float': orig_op, 'dq': dq_op}
index = full_ops.index(dq_op)
for k, op in op_dict.items():
# Collect multiple data to build a tflite model
inputs = [x.name for x in op.inputs if x.buffer is None and not isinstance(x, tfl.OptionalTensor)]
outputs = [x.name for x in op.outputs if x.buffer is None and not isinstance(x, tfl.OptionalTensor)]
tensor_map = {t.name: t for t in op.inputs + op.outputs}
labels = tensor_map.keys()
tensors, buffers, input_idx, output_idx = self.collect_tensor_buffers(
labels, inputs, outputs, tensor_map
)
ops = self.collect_operators([op])
# Construct the flatbuffer model
tflite_model = self.build_model(ops, tensors, buffers, input_idx, output_idx)
fn, ext = os.path.splitext(orig_tflite_path)
fn += f'_{k}_{index}'
tflite_path = f'{fn}{ext}'
# Check output directory
tflite_dir = os.path.abspath(os.path.dirname(tflite_path))
os.makedirs(tflite_dir, exist_ok=True)
# Write to file
with open(tflite_path, 'wb') as f:
f.write(tflite_model)
def build_model(
self,
ops: typing.List[tfl.BaseOperator],
tensors: typing.List[tfl.Tensor],
buffers: typing.List[tfl.Buffer],
input_idx: typing.List[int],
output_idx: typing.List[int],
) -> bytearray:
"""Build the flatbuffer model
Args:
ops (typing.List[tfl.BaseOperator]): TFLite operators
tensors (typing.List[tfl.Tensor]): TFLite tensors
buffers (typing.List[tfl.Buffer]): TFLite buffers
input_idx (typing.List[int]): The indices of the input tensors
output_idx (typing.List[int]): The indices of the output tensors
Returns:
bytearray: The built flatbuffer model
"""
# Start flatbuffer
builder = flatbuffers.Builder(0)
# Write data into flatbuffer
tensor_offsets = [t.build(builder) for t in tensors]
op_offsets = [op.build(builder) for op in ops]
opcode_offsets = [op.op.build(builder) for op in ops]
buffer_offsets = [buffer.build(builder) for buffer in buffers]
# Build Subgraph
subgraph = tfl.SubGraph()
subgraph.tensors.extend(tensor_offsets)
subgraph.inputs.extend(input_idx)
subgraph.outputs.extend(output_idx)
subgraph.operators.extend(op_offsets)
# Build Model
model = tfl.Model()
model.buffers.extend(buffer_offsets)
model.subgraphs.append(subgraph.build(builder))
model.opcodes.extend(opcode_offsets)
model = model.build(builder)
builder.Finish(model, b"TFL3")
# Finish Model
tflite_model = builder.Output()
return tflite_model