-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathhybrid_quantizer.py
264 lines (217 loc) · 11.4 KB
/
hybrid_quantizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import copy
import functools
import igraph as ig
import numpy as np
import torch
from tinynn.util.util import class_conditional, get_logger
from . import tflite as tfl
from .base import ExtendedOperator
from .graph import CommonGraph
log = get_logger(__name__)
WEIGHT_MAPPING = {
ExtendedOperator.UNIDIRECTIONAL_SEQUENCE_LSTM: [1, 2, 3, 4, 5, 6, 7, 8],
ExtendedOperator.BIDIRECTIONAL_SEQUENCE_LSTM: [1, 2, 3, 4, 5, 6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25],
}
BIAS_MAPPING = {
ExtendedOperator.UNIDIRECTIONAL_SEQUENCE_LSTM: {1: 12, 2: 13, 3: 14, 4: 15},
}
STATE_MAPPING = {
ExtendedOperator.UNIDIRECTIONAL_SEQUENCE_LSTM: [18],
}
CELL_STATE_MAPPING = {
ExtendedOperator.UNIDIRECTIONAL_SEQUENCE_LSTM: [19],
}
class HybridQuantizer(object):
graph: CommonGraph
def __init__(
self, graph, asymmetric, q_type, per_channel, enable_conv, enable_int16_lstm, gen_single_op_models, config
) -> None:
super().__init__()
self.graph = graph
self.asymmetric = asymmetric
self.q_type = q_type
self.per_channel = per_channel
self.enable_conv = enable_conv
self.enable_int16_lstm = enable_int16_lstm
self.gen_single_op_models = gen_single_op_models
if config is None:
config = {}
self.config = config
def quantize(self):
self.quantize_pass()
self.int16_lstm_pass()
@class_conditional(lambda self: self.enable_int16_lstm)
def int16_lstm_pass(self):
filtered_nodes = self.graph.graph.vs.select(functools.partial(is_int16_quantizable_lstm_node))
actions = []
replaced_tensors = {}
for node in filtered_nodes:
if self.config.get(node['outputs'][0], True) is False:
continue
if node['node_type'] == ExtendedOperator.UNIDIRECTIONAL_SEQUENCE_LSTM:
lstm_input = node['op'].inputs[0]
if lstm_input.dtype == np.int8:
bias_indices = BIAS_MAPPING.get(node['node_type'])
for weight_idx, bias_idx in bias_indices.items():
bias_t = node['op'].inputs[bias_idx]
weight_t = node['op'].inputs[weight_idx]
name = bias_t.name
new_name = f'{name}_hybrid_q'
bias_a = np.frombuffer(bias_t.buffer.data, dtype='float32').reshape(bias_t.shape)
bias = torch.from_numpy(bias_a.copy())
bias_scale = weight_t.quantization.scale * lstm_input.quantization.scale
new_bias = torch.round(bias.detach() / bias_scale).to(dtype=torch.int32)
new_bias_t = tfl.Tensor(tfl.FakeQuantTensor(new_bias, bias_scale, 0), new_name)
replaced_tensors.setdefault(new_bias_t.name, new_bias_t)
new_bias_t = replaced_tensors[new_bias_t.name]
actions.append((self.graph.replace_operator_input, (node, bias_idx, new_bias_t)))
state_indices = STATE_MAPPING.get(node['node_type'])
for state_idx in state_indices:
node['op'].inputs[state_idx].quantization = copy.deepcopy(node['op'].outputs[0].quantization)
node['op'].inputs[state_idx].tensor = node['op'].inputs[state_idx].tensor.astype(np.int8)
node['op'].inputs[state_idx].dtype = node['op'].inputs[state_idx].tensor.dtype
cell_state_indices = CELL_STATE_MAPPING.get(node['node_type'])
for cell_state_idx in cell_state_indices:
q_cell_output = self.graph.rev_q_mapping[node['op'].extra_hints['cell_output']].quantization
q_cell_max = q_cell_output.scale * (127 - q_cell_output.zero_point)
q_cell_min = q_cell_output.scale * (-128 - q_cell_output.zero_point)
q_cell_abs_max = np.maximum(np.abs(q_cell_max), np.abs(q_cell_min))
cell_pot = np.power(2, np.maximum(np.ceil(np.log2(q_cell_abs_max)), 0)).item()
node['op'].inputs[cell_state_idx].quantization = tfl.QuantizationParameters(cell_pot / 32768, 0)
node['op'].inputs[cell_state_idx].tensor = (
node['op'].inputs[cell_state_idx].tensor.astype(np.int16)
)
node['op'].inputs[cell_state_idx].dtype = node['op'].inputs[cell_state_idx].tensor.dtype
# Add intermediates for int8x8_16 lstm
name = node['op'].outputs[0].name
input_to_input_intermediate = tfl.Tensor(np.zeros(0, dtype='float32'), f'{name}_intermediate_1')
input_to_forget_intermediate = tfl.Tensor(np.zeros(0, dtype='float32'), f'{name}_intermediate_2')
input_to_cell_intermediate = tfl.Tensor(np.zeros(0, dtype='float32'), f'{name}_intermediate_3')
input_to_output_intermediate = tfl.Tensor(np.zeros(0, dtype='float32'), f'{name}_intermediate_4')
effective_hidden_scale_intermediate = tfl.Tensor(
tfl.FakeQuantTensor(np.zeros(0, dtype='int8'), node['op'].outputs[0].quantization.scale, 0),
f'{name}_intermediate_5',
)
actions.append((self.graph.append_operator_input, (node, input_to_input_intermediate, True)))
actions.append((self.graph.append_operator_input, (node, input_to_forget_intermediate, True)))
actions.append((self.graph.append_operator_input, (node, input_to_cell_intermediate, True)))
actions.append((self.graph.append_operator_input, (node, input_to_output_intermediate, True)))
actions.append(
(self.graph.append_operator_input, (node, effective_hidden_scale_intermediate, True))
)
for func, args in actions:
func(*args)
def quantize_pass(self):
filtered_nodes = self.graph.graph.vs.select(functools.partial(is_quantizable_node, with_conv=self.enable_conv))
actions = []
replaced_tensors = {}
for node in filtered_nodes:
if self.config.get(node['outputs'][0], True) is False:
continue
weight_indices = WEIGHT_MAPPING.get(node['node_type'], [1])
skip = False
for weight_idx in weight_indices:
new_weight = None
weight_t = node['op'].inputs[weight_idx]
if weight_t.buffer is None or str(weight_t.dtype) != 'float32':
skip = True
break
if skip:
continue
for weight_idx in weight_indices:
weight_t = node['op'].inputs[weight_idx]
name = weight_t.name
weight_a = np.frombuffer(weight_t.buffer.data, dtype='float32').reshape(weight_t.shape)
weight = torch.from_numpy(weight_a.copy())
if (
node['node_type']
in (
ExtendedOperator.FULLY_CONNECTED,
ExtendedOperator.UNIDIRECTIONAL_SEQUENCE_LSTM,
ExtendedOperator.BIDIRECTIONAL_SEQUENCE_LSTM,
)
or not self.per_channel
):
if node['node_type'] == ExtendedOperator.DEPTHWISE_CONV_2D:
log.warning('DEPTHWISE_CONV_2D doesn\'t support hybrid per-tensor quantization')
continue
if self.asymmetric and hasattr(node['op'], 'asymmetricQuantizeInputs'):
node['op'].asymmetricQuantizeInputs = True
if self.q_type == np.uint8:
new_weight = quantize(name, weight, torch.qint8, torch.per_tensor_symmetric, q_type=np.int8)
new_weight.reinterpret_as(self.q_type)
else:
new_weight = quantize(name, weight, torch.qint8, torch.per_tensor_symmetric, q_type=self.q_type)
elif node['node_type'] == ExtendedOperator.CONV_2D:
new_weight = quantize(name, weight, torch.qint8, torch.per_channel_symmetric, 0, q_type=self.q_type)
elif node['node_type'] == ExtendedOperator.DEPTHWISE_CONV_2D:
new_weight = quantize(
name, weight, torch.qint8, torch.per_channel_symmetric, -1, q_type=self.q_type
)
if self.gen_single_op_models:
node['op'].extra_hints['orig_float'] = copy.deepcopy(node['op'])
replaced_tensors.setdefault(new_weight.name, new_weight)
new_weight = replaced_tensors[new_weight.name]
actions.append((self.graph.replace_operator_input, (node, weight_idx, new_weight)))
for func, args in actions:
func(*args)
def is_quantizable_node(vertex: ig.Vertex, with_conv: bool):
return vertex['node_type'] in (
ExtendedOperator.FULLY_CONNECTED,
ExtendedOperator.UNIDIRECTIONAL_SEQUENCE_LSTM,
ExtendedOperator.BIDIRECTIONAL_SEQUENCE_LSTM,
) or (
with_conv
and vertex['node_type']
in (
ExtendedOperator.CONV_2D,
ExtendedOperator.DEPTHWISE_CONV_2D,
)
)
def is_int16_quantizable_lstm_node(vertex: ig.Vertex):
return vertex['node_type'] in (ExtendedOperator.UNIDIRECTIONAL_SEQUENCE_LSTM,)
def quantize(name, tensor, dtype, qscheme, axis=None, q_type=np.uint8):
assert qscheme in (torch.per_tensor_symmetric, torch.per_channel_symmetric)
new_name = f'{name}_hybrid_q'
if dtype == torch.quint8:
quant_min, quant_max = 0, 255
else:
quant_min, quant_max = -127, 127
if axis is not None:
if axis < 0:
axis += tensor.ndim
dim = [i for i in range(tensor.ndim) if i != axis]
else:
dim = None
if hasattr(torch, 'amin') and hasattr(torch, 'amax'):
min_val = torch.amin(tensor, dim)
max_val = torch.amax(tensor, dim)
else:
if dim is None:
min_val = torch.min(tensor)
max_val = torch.max(tensor)
else:
orig_dim = tensor.size(axis)
if axis != 0:
perm = [axis] + dim
tensor_perm = tensor.permute(perm)
else:
tensor_perm = tensor
tensor_2d = tensor_perm.reshape(orig_dim, -1)
min_val, _ = torch.min(tensor_2d, 1)
max_val, _ = torch.max(tensor_2d, 1)
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
scale = torch.ones(min_val_neg.size(), dtype=torch.float32)
zero_point = torch.zeros(min_val_neg.size(), dtype=torch.int64)
eps = torch.tensor(torch.finfo(torch.float32).eps)
max_val_pos = torch.max(-min_val_neg, max_val_pos)
scale = max_val_pos / (float(quant_max - quant_min) / 2)
scale = torch.max(scale, eps)
if dtype == torch.quint8:
zero_point = zero_point.new_full(zero_point.size(), 128)
if qscheme == torch.per_channel_symmetric:
q_tensor = torch.quantize_per_channel(tensor, scale, zero_point, axis, dtype)
else:
q_tensor = torch.quantize_per_tensor(tensor, scale, zero_point, dtype)
return tfl.Tensor(q_tensor, new_name, q_type=q_type)