-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathtransformable.py
677 lines (559 loc) · 26.8 KB
/
transformable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
from abc import abstractmethod
from .base import BaseOperator, QuantizationParameters, Tensor
from .custom import MTKTransposeConvOperator
from . import generated_ops as tfl_ops
from ..base import ExtendedOperator
from ...schemas.tflite import schema_generated as tflite
import typing
import torch
import warnings
import numpy as np
class TransformableOperator(BaseOperator):
def __init__(self, op: int, inputs: typing.List['Tensor'], outputs: typing.List['Tensor'], op_version: int):
super().__init__(op, inputs, outputs, op_version=op_version)
self.attr_count = 0
self.transform_count = 0
@abstractmethod
def transform(self):
pass
def create_attr_tensor(self, tensor, name=None, quantization=None):
if name is None:
if self.attr_count == 0:
name = self.outputs[0].name + '_te_attr'
else:
name = self.outputs[0].name + f'_te_attr_{self.attr_count}'
self.attr_count += 1
return Tensor(tensor, name, has_buffer=True, quantization=quantization)
def create_transform_tensor(self, tensor, name=None, quantization=None):
if name is None:
if self.transform_count == 0:
name = self.outputs[0].name + '_te_transform'
else:
name = self.outputs[0].name + f'_te_transform_{self.transform_count}'
self.transform_count += 1
return Tensor(tensor, name, has_buffer=False, quantization=quantization)
def wrap_ops_with_nhwc_nchw_transposes(
self, ops: typing.List[tfl_ops.BaseOperator], input_idx: int = 0, output_idx: int = 0
) -> typing.List[tfl_ops.BaseOperator]:
orig_input = ops[0].inputs[input_idx]
orig_output = ops[-1].outputs[output_idx]
if orig_input.tensor.ndim == 4:
nhwc2nchw_perm = np.array([0, 3, 1, 2], dtype='int32')
nchw2nhwc_perm = np.array([0, 2, 3, 1], dtype='int32')
elif orig_input.tensor.ndim == 5:
nhwc2nchw_perm = np.array([0, 4, 1, 2, 3], dtype='int32')
nchw2nhwc_perm = np.array([0, 2, 3, 4, 1], dtype='int32')
else:
assert False, f'Don\'t know how to wrap tranposes for {orig_input.tensor.ndim}d tensors'
nhwc2nchw_perm_tensor = self.create_attr_tensor(nhwc2nchw_perm)
nchw2nhwc_perm_tensor = self.create_attr_tensor(nchw2nhwc_perm)
new_input = self.create_transform_tensor(
np.transpose(orig_input.tensor, nchw2nhwc_perm), quantization=orig_input.quantization
)
new_output = self.create_transform_tensor(
np.transpose(orig_output.tensor, nchw2nhwc_perm), quantization=orig_output.quantization
)
nchw2nhwc_transpose = tfl_ops.TransposeOperator([orig_input, nchw2nhwc_perm_tensor], [new_input])
nhwc2nchw_transpose = tfl_ops.TransposeOperator([new_output, nhwc2nchw_perm_tensor], [orig_output])
nchw2nhwc_transpose.extra_hints['direction'] = 'up'
nhwc2nchw_transpose.extra_hints['direction'] = 'down'
ops[0].inputs[input_idx] = new_input
ops[-1].outputs[output_idx] = new_output
return [nchw2nhwc_transpose] + ops + [nhwc2nchw_transpose]
class BatchNormOperator(TransformableOperator):
input_index = 0
weight_index = 1
bias_index = 2
running_mean_index = 3
running_variance_index = 4
output_index = 0
def __init__(
self,
inputs: typing.List['Tensor'],
outputs: typing.List['Tensor'],
eps: float,
quantization: typing.Optional[QuantizationParameters] = None,
fusedActivationFunction=tflite.ActivationFunctionType.NONE,
):
super().__init__(ExtendedOperator.BATCH_NORM, inputs, outputs, 1)
self.eps = eps
self.fusedActivationFunction = fusedActivationFunction
def transform(self, graph_converter, mapping):
assert all((x.buffer is not None for x in self.inputs[1:]))
w, b, mean, var = [
self.inputs[i]
for i in (self.weight_index, self.bias_index, self.running_mean_index, self.running_variance_index)
]
inv = 1 / np.sqrt(var.tensor + self.eps)
new_w = inv * w.tensor
new_b = b.tensor - mean.tensor * new_w
inp = self.inputs[0]
new_shape = [1] + [new_w.shape[0]] + [1] * (inp.tensor.ndim - 2)
new_w = new_w.reshape(new_shape)
new_b = new_b.reshape(new_shape)
weight = self.create_attr_tensor(new_w)
bias = self.create_attr_tensor(new_b)
new_inp = inp
if inp.quantization is not None:
new_inp = self.create_transform_tensor(inp.tensor)
graph_converter.add_operator(tfl_ops.DequantizeOperator([inp], [new_inp]))
mul_out = self.create_transform_tensor(new_inp.tensor * weight.tensor)
graph_converter.add_operator(tfl_ops.MulOperator([new_inp, weight], [mul_out]))
if inp.quantization is not None:
add_out = self.create_transform_tensor(mul_out.tensor + bias.tensor)
else:
add_out = self.outputs[self.output_index]
graph_converter.add_operator(
tfl_ops.AddOperator([mul_out, bias], [add_out], fusedActivationFunction=self.fusedActivationFunction),
transform=True,
)
if inp.quantization is not None:
quant_out = self.outputs[self.output_index]
graph_converter.add_operator(tfl_ops.QuantizeOperator([add_out], [quant_out]), transform=True)
graph_converter.try_restore_edges(mapping)
class GenericConvOperator(TransformableOperator):
input_index = 0
weight_index = 1
bias_index = 2
output_index = 0
stride: typing.List[int]
padding: typing.List[int]
dilation: typing.List[int]
transpose: bool
output_padding: typing.List[int]
groups: int
fusedActivationFunction: tflite.ActivationFunctionType
def __init__(
self,
inputs: typing.List['Tensor'],
outputs: typing.List['Tensor'],
stride: typing.List[int],
padding: typing.List[int],
dialation: typing.List[int],
output_padding: typing.List[int],
groups: int,
fusedActivationFunction=tflite.ActivationFunctionType.NONE,
):
super().__init__(ExtendedOperator.GENERIC_CONV, inputs, outputs, 1)
self.stride = stride
self.padding = padding
self.dilation = dialation
self.output_padding = output_padding
self.groups = groups
self.fusedActivationFunction = fusedActivationFunction
def transform(self, graph_converter, mapping):
input_tensor = self.inputs[0]
weight_tensor = self.inputs[1]
input_dim = len(input_tensor.shape)
weight_dim = len(weight_tensor.shape)
prev_ops = []
next_ops = []
if weight_dim == 3 or input_dim == 3:
reshape_input_size = 1
reshape_output_size = 1
if weight_dim == 3:
self.stride.insert(0, 1)
self.padding.insert(0, 0)
self.dilation.insert(0, 1)
self.output_padding.insert(0, 0)
reshape_input_size = 2
reshape_outputs = [
self.create_transform_tensor(
np.expand_dims(t.tensor, 2),
name=f'{self.outputs[0].name}_{t.name}_4d_input',
quantization=t.quantization,
)
for t in self.inputs[:reshape_input_size]
]
reshape_attrs = [self.create_attr_tensor(np.array(t.shape, dtype='int32')) for t in reshape_outputs]
reshape_ops = [
tfl_ops.ReshapeOperator([old, attr], [new], attr.tensor)
for old, new, attr in zip(self.inputs[:reshape_input_size], reshape_outputs, reshape_attrs)
]
for op in reshape_ops:
op.extra_hints['direction'] = 'up'
prev_ops.extend(reshape_ops)
conv_outputs = [
self.create_transform_tensor(
np.expand_dims(self.outputs[i].tensor, 2),
name=f'{self.outputs[i].name}_4d_output',
quantization=self.outputs[i].quantization,
)
for i in range(reshape_output_size)
]
conv_attrs = [
self.create_attr_tensor(np.array(t.shape, dtype='int32')) for t in self.outputs[:reshape_output_size]
]
conv_ops = [
tfl_ops.ReshapeOperator([old, attr], [new], attr.tensor)
for old, new, attr in zip(conv_outputs, self.outputs[:reshape_output_size], conv_attrs)
]
for op in conv_ops:
op.extra_hints['direction'] = 'down'
next_ops.extend(conv_ops)
self.inputs = reshape_outputs + self.inputs[reshape_input_size:]
self.outputs = conv_outputs + self.outputs[reshape_output_size:]
weight_tensor = self.inputs[1]
elif weight_dim not in (4, 5):
assert False, "Only Conv[Transpose]1d/2d/3d is supported"
if weight_tensor.shape[1] == 1 and weight_tensor.shape[0] == self.groups:
if weight_dim in (3, 4):
conv_op = tfl_ops.DepthwiseConv2dOperator(
self.inputs,
self.outputs,
strideH=self.stride[0],
strideW=self.stride[1],
depthMultiplier=1,
dilationHFactor=self.dilation[0],
dilationWFactor=self.dilation[1],
fusedActivationFunction=self.fusedActivationFunction,
padding=tflite.Padding.VALID,
)
else:
assert False, "Only DepthwiseConv1d/2d is supported"
else:
if input_tensor.shape[1] != weight_tensor.shape[1]:
warnings.warn(
'Group conv is not supported if official tflite interpreter is used. If that is the case for you,'
' plese pass in `group_conv_rewrite=True`. If you want to run the model with TFLite micro, then you'
' may also need to pass in `tflite_micro_rewrite=True`'
)
if weight_dim in (3, 4):
conv_op = tfl_ops.Conv2dOperator(
self.inputs,
self.outputs,
strideH=self.stride[0],
strideW=self.stride[1],
dilationHFactor=self.dilation[0],
dilationWFactor=self.dilation[1],
fusedActivationFunction=self.fusedActivationFunction,
padding=tflite.Padding.VALID,
)
else:
conv_op = tfl_ops.Conv3dOperator(
self.inputs,
self.outputs,
strideD=self.stride[0],
strideH=self.stride[1],
strideW=self.stride[2],
dilationDFactor=self.dilation[0],
dilationHFactor=self.dilation[1],
dilationWFactor=self.dilation[2],
fusedActivationFunction=self.fusedActivationFunction,
padding=tflite.Padding.VALID,
)
ops = self.wrap_ops_with_nhwc_nchw_transposes([conv_op])
conv_op = ops[1]
# Pad handling
if sum(self.padding) > 0:
if weight_dim in (3, 4):
pad_h = self.padding[0]
pad_w = self.padding[1]
pad = [[0, 0], [pad_h, pad_h], [pad_w, pad_w], [0, 0]]
else:
pad_d = self.padding[0]
pad_h = self.padding[1]
pad_w = self.padding[2]
pad = [[0, 0], [pad_d, pad_d], [pad_h, pad_h], [pad_w, pad_w], [0, 0]]
pad_tensor = self.create_attr_tensor(np.array(pad, dtype='int32'))
pad_input = ops[0].outputs[0]
pad_array = np.pad(pad_input.tensor, pad)
pad_out = self.create_transform_tensor(pad_array, quantization=pad_input.quantization)
ops[1].inputs[0] = pad_out
pad_op = tfl_ops.PadOperator([pad_input, pad_tensor], [pad_out])
ops.insert(1, pad_op)
# Weight handling
weight = conv_op.inputs[1]
if conv_op.op.code == tflite.BuiltinOperator.DEPTHWISE_CONV_2D:
nchw2chwn_perm = np.array([1, 2, 3, 0], dtype='int32')
nchw2chwn_perm_tensor = self.create_attr_tensor(nchw2chwn_perm)
weight_q = weight.quantization
if weight_q is not None and weight_q.dim is not None:
new_dim = np.nonzero(nchw2chwn_perm == weight_q.dim)[0][0]
weight_q = QuantizationParameters(weight_q.scale, weight_q.zero_point, new_dim)
reordered_weight = self.create_transform_tensor(
np.transpose(weight.tensor, nchw2chwn_perm), quantization=weight_q
)
conv_op.inputs[1] = reordered_weight
reorder_op = tfl_ops.TransposeOperator([weight, nchw2chwn_perm_tensor], [reordered_weight])
else:
if weight_dim in (3, 4):
nchw2nhwc_perm = np.array([0, 2, 3, 1], dtype='int32')
nchw2nhwc_perm_tensor = self.create_attr_tensor(nchw2nhwc_perm)
else:
nchw2nhwc_perm = np.array([2, 3, 4, 1, 0], dtype='int32')
nchw2nhwc_perm_tensor = self.create_attr_tensor(nchw2nhwc_perm)
weight_q = weight.quantization
if weight_q is not None and weight_q.dim is not None:
new_dim = np.nonzero(nchw2nhwc_perm == weight_q.dim)[0][0]
weight_q = QuantizationParameters(weight_q.scale, weight_q.zero_point, new_dim)
reordered_weight = self.create_transform_tensor(
np.transpose(weight.tensor, nchw2nhwc_perm), quantization=weight_q
)
conv_op.inputs[1] = reordered_weight
reorder_op = tfl_ops.TransposeOperator([weight, nchw2nhwc_perm_tensor], [reordered_weight])
ops.insert(1, reorder_op)
# Bias handling
kernel_num = self.inputs[1].shape[0]
if conv_op.op.code in (tflite.BuiltinOperator.DEPTHWISE_CONV_2D, tflite.BuiltinOperator.CONV_3D):
kernel_num = self.inputs[1].shape[-1]
if len(conv_op.inputs) == 2 or conv_op.inputs[2] is None:
if conv_op.inputs[0].dtype == np.dtype('float32'):
bias = np.zeros((kernel_num,), dtype='float32')
q_args = None
else:
bias = np.zeros((kernel_num,), dtype='int32')
per_tensor = weight_tensor.quantization.dim is None
# Bias handling
if per_tensor:
bias_scale = input_tensor.quantization.scale * weight_tensor.quantization.scale
bias_zero_point = 0
bias_dim = None
else:
bias_scale = [input_tensor.quantization.scale * s for s in weight_tensor.quantization.scale]
bias_zero_point = [0] * len(bias_scale)
bias_dim = 0
q_args = QuantizationParameters(bias_scale, bias_zero_point, bias_dim)
conv_op.inputs.append(self.create_attr_tensor(bias, quantization=q_args))
elif conv_op.inputs[2].shape[0] != kernel_num and conv_op.inputs[2].shape[0] == 1:
if conv_op.inputs[0].dtype == np.float32:
bias = torch.tensor([conv_op.inputs[2][0]] * kernel_num, dtype='float32')
else:
bias = torch.tensor([conv_op.inputs[2][0]] * kernel_num, dtype='int32')
conv_op.inputs[2] = self.create_attr_tensor(bias)
ops = prev_ops + ops + next_ops
for op in ops:
graph_converter.add_operator(op, transform=True)
graph_converter.try_restore_edges(mapping)
for op in ops[:-1]:
output_name = op.outputs[0].name
node_name = graph_converter.tensor_node_map[output_name]
node = graph_converter.graph.vs.find(name=node_name)
assert node.outdegree() > 0, (
'The following node should be a part of the transformable node, but the outdegree of'
f' it is zero. {node}'
)
next_node = graph_converter.graph.vs[node.out_edges()[0].target]
assert next_node['node_type'] != ExtendedOperator.CONSTANT_NODE
class GenericTransposeConvOperator(TransformableOperator):
input_index = 0
weight_index = 1
bias_index = 2
output_index = 0
stride: typing.List[int]
padding: typing.List[int]
dilation: typing.List[int]
transpose: bool
output_padding: typing.List[int]
groups: int
enable_mtk_ops: bool
conv_transpose_with_bias: bool
fusedActivationFunction: tflite.ActivationFunctionType
def __init__(
self,
inputs: typing.List['Tensor'],
outputs: typing.List['Tensor'],
stride: typing.List[int],
padding: typing.List[int],
dilation: typing.List[int],
output_padding: typing.List[int],
groups: int,
enable_mtk_ops: bool = False,
conv_transpose_with_bias: bool = True,
fusedActivationFunction=tflite.ActivationFunctionType.NONE,
):
super().__init__(ExtendedOperator.GENERIC_DECONV, inputs, outputs, 1)
self.stride = stride
self.padding = padding
self.dilation = dilation
self.output_padding = output_padding
self.groups = groups
self.enable_mtk_ops = enable_mtk_ops
self.conv_transpose_with_bias = conv_transpose_with_bias
self.fusedActivationFunction = fusedActivationFunction
def transform(self, graph_converter, mapping):
input_tensor = self.inputs[0]
weight_tensor = self.inputs[1]
output_tensor = self.outputs[0]
input_dim = len(input_tensor.shape)
weight_dim = len(weight_tensor.shape)
prev_ops = []
next_ops = []
if weight_dim == 3 or input_dim == 3:
self.stride.insert(0, 1)
self.padding.insert(0, 0)
self.dilation.insert(0, 1)
self.output_padding.insert(0, 0)
reshape_outputs = [
self.create_transform_tensor(
np.expand_dims(t.tensor, 2),
name=f'{self.outputs[0].name}_{t.name}_4d_input',
quantization=t.quantization,
)
for t in self.inputs[:2]
]
reshape_attrs = [self.create_attr_tensor(np.array(t.shape, dtype='int32')) for t in reshape_outputs]
reshape_ops = [
tfl_ops.ReshapeOperator([old, attr], [new], attr.tensor)
for old, new, attr in zip(self.inputs[:2], reshape_outputs, reshape_attrs)
]
for op in reshape_ops:
op.extra_hints['direction'] = 'up'
if weight_dim == 3 and input_dim == 3:
prev_ops.extend(reshape_ops)
elif weight_dim == 3:
prev_ops.append(reshape_ops[1])
else:
prev_ops.append(reshape_ops[0])
conv_outputs = [
self.create_transform_tensor(
np.expand_dims(self.outputs[0].tensor, 2),
name=f'{self.outputs[0].name}_4d_output',
quantization=self.outputs[0].quantization,
)
]
conv_attrs = [self.create_attr_tensor(np.array(t.shape, dtype='int32')) for t in self.outputs[:1]]
conv_ops = [
tfl_ops.ReshapeOperator([old, attr], [new], attr.tensor)
for old, new, attr in zip(conv_outputs, self.outputs[:1], conv_attrs)
]
for op in conv_ops:
op.extra_hints['direction'] = 'down'
next_ops.extend(conv_ops)
if weight_dim == 3 and input_dim == 3:
self.inputs = reshape_outputs + self.inputs[2:]
elif weight_dim == 3:
self.inputs = self.inputs[0:1] + reshape_outputs[1:2] + self.inputs[1:]
else:
self.inputs = reshape_outputs[0:1] + self.inputs[1:]
self.outputs = conv_outputs + self.outputs[1:]
weight_tensor = self.inputs[1]
elif weight_dim not in (4, 5):
assert False, "Only Conv[Transpose]1d/2d/3d is supported"
if output_tensor.shape[1] != weight_tensor.shape[1]:
warnings.warn(
'Group transposed conv is not supported if official tflite interpreter is used. If that is the case'
' for you, plese pass in `group_conv_rewrite=True`. If you want to run the model with TFLite micro,'
' then you may also need to pass in `tflite_micro_rewrite=True`'
)
if weight_dim in (3, 4):
assert all((x == 1 for x in self.dilation)), "Only dilation=1 is supported for conv_transpose2d"
if self.enable_mtk_ops:
conv_op = MTKTransposeConvOperator(
self.inputs[:2][::-1],
self.outputs,
depth_multiplier=1,
dilation_height_factor=self.dilation[0],
dilation_width_factor=self.dilation[1],
padding_type=tflite.Padding.VALID,
stride_height=self.stride[0],
stride_width=self.stride[1],
)
else:
conv_op = tfl_ops.TransposeConvOperator(
self.inputs[:2][::-1],
self.outputs,
strideH=self.stride[0],
strideW=self.stride[1],
padding=tflite.Padding.VALID,
fusedActivationFunction=self.fusedActivationFunction,
)
else:
conv_op = tfl_ops.Conv3dTransposeOperator(
self.inputs[:2][::-1],
self.outputs,
strideD=self.stride[0],
strideH=self.stride[1],
strideW=self.stride[2],
dilationDFactor=self.dilation[0],
dilationHFactor=self.dilation[1],
dilationWFactor=self.dilation[2],
padding=tflite.Padding.VALID,
fusedActivationFunction=self.fusedActivationFunction,
)
ops = self.wrap_ops_with_nhwc_nchw_transposes([conv_op], input_idx=1)
# Pad handling
output_shape = conv_op.outputs[0].shape
if sum(self.padding) > 0:
if weight_dim in (3, 4):
pad_h = self.padding[0]
pad_w = self.padding[1]
start = np.array([0, pad_h, pad_w, 0], dtype='int32')
pad_sizes = ((0, 0), (pad_h, pad_h), (pad_w, pad_w), (0, 0))
else:
pad_d = self.padding[0]
pad_h = self.padding[1]
pad_w = self.padding[2]
start = np.array([0, pad_d, pad_h, pad_w, 0], dtype='int32')
pad_sizes = ((0, 0), (pad_d, pad_d), (pad_h, pad_h), (pad_w, pad_w), (0, 0))
size = np.array(ops[1].outputs[0].shape, dtype='int32')
start_tensor = self.create_attr_tensor(start)
size_tensor = self.create_attr_tensor(size)
slice_out = ops[1].outputs[0]
pad_array = np.pad(self.outputs[0].tensor, pad_sizes)
slice_input = self.create_transform_tensor(pad_array, quantization=self.outputs[0].quantization)
ops[1].outputs[0] = slice_input
slice_op = tfl_ops.SliceOperator([slice_input, start_tensor, size_tensor], [slice_out])
output_shape = slice_input.shape
ops.insert(2, slice_op)
# Output shape handling
output_shape_tensor = self.create_attr_tensor(np.array(output_shape, dtype='int32'))
conv_op.inputs.insert(0, output_shape_tensor)
# Weight handling
weight = conv_op.inputs[1]
if weight_dim in (3, 4):
nchw2chwn_perm = np.array([1, 2, 3, 0], dtype='int32')
else:
nchw2chwn_perm = np.array([2, 3, 4, 1, 0], dtype='int32')
nchw2chwn_perm_tensor = self.create_attr_tensor(nchw2chwn_perm)
reordered_weight = self.create_transform_tensor(
np.transpose(weight.tensor, nchw2chwn_perm), quantization=weight.quantization
)
conv_op.inputs[1] = reordered_weight
reorder_op = tfl_ops.TransposeOperator([weight, nchw2chwn_perm_tensor], [reordered_weight])
ops.insert(1, reorder_op)
# Bias handling
if self.enable_mtk_ops or self.conv_transpose_with_bias:
kernel_num = output_tensor.shape[1]
if len(self.inputs) > 2 and self.inputs[2].shape[0] != kernel_num and self.inputs[2].shape[0] == 1:
if conv_op.inputs[-1].dtype == np.float32:
bias = torch.tensor([self.inputs[2][0]] * kernel_num, dtype='float32')
else:
bias = torch.tensor([self.inputs[2][0]] * kernel_num, dtype='int32')
conv_op.inputs.append(self.create_attr_tensor(bias))
else:
if len(self.inputs) == 2 or self.inputs[2] is None:
if conv_op.inputs[-1].dtype == np.dtype('float32'):
bias = np.zeros((kernel_num,), dtype='float32')
q_args = None
else:
bias = np.zeros((kernel_num,), dtype='int32')
else:
bias = self.inputs[2].tensor
q_args = None
if bias.dtype != np.dtype('float32'):
per_tensor = weight_tensor.quantization.dim is None
# Bias handling
if per_tensor:
bias_scale = input_tensor.quantization.scale * weight_tensor.quantization.scale
bias_zero_point = 0
bias_dim = None
else:
bias_scale = [input_tensor.quantization.scale * s for s in weight_tensor.quantization.scale]
bias_zero_point = [0] * len(bias_scale)
bias_dim = 0
q_args = QuantizationParameters(bias_scale, bias_zero_point, bias_dim)
conv_op.inputs.append(self.create_attr_tensor(bias, quantization=q_args))
else:
if len(self.inputs) > 2 and self.inputs[2] is not None:
bias_tensor = self.inputs[2]
add_out = ops[-2].outputs[0]
bias_transform = self.create_transform_tensor(
add_out.tensor.copy(), quantization=self.outputs[0].quantization
)
ops[-2].outputs[0] = bias_transform
ops.insert(len(ops) - 1, tfl_ops.AddOperator([bias_transform, bias_tensor], [add_out]))
ops = prev_ops + ops + next_ops
for op in ops:
graph_converter.add_operator(op)
graph_converter.try_restore_edges(mapping)