-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathbase.py
798 lines (659 loc) · 31.6 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
from abc import ABC, abstractmethod
from distutils.version import LooseVersion
import inspect
import math
import warnings
import torch
import typing
import numpy as np
from .. import tflite as tfl
from tinynn.util.util import get_logger
log = get_logger(__name__, 'INFO')
class OperatorConverter(ABC):
def __init__(
self,
node,
tensor_map,
scope_name,
asymmetric=True,
q_type=np.uint8,
hybrid_q_type=np.int8,
map_bilstm_to_lstm=False,
enable_mtk_ops=False,
hybrid_asymmetric_inputs=False,
unroll_rnn=False,
separated_rnn_gate_calc=False,
conv_transpose_with_bias=True,
legacy_gelu=False,
) -> None:
self.scope_name = scope_name
self.input_names = self.get_input_names(node)
self.output_names = self.get_output_names(node)
self.input_tensors = self.get_input_tensors(tensor_map)
self.output_tensors = []
self.output_nodes = []
self.ops = []
self.attr_count = 0
self.transform_count = 0
self.asymmetric = asymmetric
self.q_type = q_type
self.hybrid_q_type = hybrid_q_type
self.map_bilstm_to_lstm = map_bilstm_to_lstm
self.enable_mtk_ops = enable_mtk_ops
self.hybrid_asymmetric_inputs = hybrid_asymmetric_inputs
self.unroll_rnn = unroll_rnn
self.separated_rnn_gate_calc = separated_rnn_gate_calc
self.conv_transpose_with_bias = conv_transpose_with_bias
self.legacy_gelu = legacy_gelu
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
pass
def get_tensor_name(self, tensor_name, scope_name=None):
if scope_name is None:
scope_name = self.scope_name
if scope_name:
return f'{scope_name}_{tensor_name}'
else:
return tensor_name
def get_input_names(self, node):
return [self.get_tensor_name(x.debugName()) for x in list(node.inputs())]
def get_output_names(self, node):
return [self.get_tensor_name(x.debugName()) for x in list(node.outputs())]
def get_input_tensors(self, tensor_map):
input_tensors = []
for n in self.input_names:
if n in tensor_map:
input_tensors.append(tensor_map[n])
else:
raise Exception(f'{n} is not found in the tensor map')
return input_tensors
def get_output_tensors(self):
return self.output_tensors
def get_ops(self):
return self.ops
@staticmethod
def fetch_all_attrs(node):
attrs = {}
for name in node.attributeNames():
attrs[name] = get_prop_from_node(node, name, return_type=True)
return attrs
def fetch_annotated_args(self, node):
if len(self.input_tensors) == 0:
return dict()
k = node.kind()
if k.startswith('prim::'):
return dict()
schemas = torch._C._jit_get_schemas_for_operator(k)
candidates = []
for schema in schemas:
if 'name' in schema.overload_name:
continue
if len(schema.arguments) == len(self.input_tensors):
candidates.append(schema)
assert len(candidates) > 0, f"Cannot find the schema for {k}({self.output_names[0]})"
names = (x.name for x in candidates[0].arguments)
# TODO: Better selection for multiple schemas
return dict(zip(names, range(len(self.input_tensors))))
def unimplemented(self, node, attrs, args):
log.debug(f'node: {node}')
log.debug('inputs:')
for name, tensors in zip(self.input_names, self.input_tensors):
if type(tensors) not in (list, tuple):
tensors = [tensors]
for tensor in tensors:
log.debug(f'name: {name}')
log.debug(f'tensor: {tensor}')
if hasattr(tensor, 'shape'):
log.debug(f'shape: {tensor.shape}')
if hasattr(tensor, 'dtype'):
log.debug(f'dtype: {tensor.dtype}')
log.debug('-' * 60)
log.debug('outputs:')
for name, tensors in zip(self.output_names, self.output_tensors):
if type(tensors) not in (list, tuple):
tensors = [tensors]
for tensor in tensors:
log.debug(f'name: {name}')
log.debug(f'tensor: {tensor}')
if hasattr(tensor, 'shape'):
log.debug(f'shape: {tensor.shape}')
if hasattr(tensor, 'dtype'):
log.debug(f'dtype: {tensor.dtype}')
log.debug('-' * 60)
log.debug(f'attrs: {attrs}')
log.debug(f'args: {args}')
raise NotImplementedError
def run(self, node):
kind = node.kind()
inplace = kind.endswith('_')
func = torch._C._jit_get_operation(kind)
if inplace:
tmp_inputs = [x.detach().clone() if isinstance(x, torch.Tensor) else x for x in self.input_tensors]
if isinstance(func, tuple):
func = func[0]
with torch.no_grad():
legacy = True
if LooseVersion(torch.__version__) >= LooseVersion('1.8.0'):
try:
o = func(*self.input_tensors)
legacy = False
except (TypeError, RuntimeError):
pass
if legacy:
try:
args = self.fetch_annotated_args(node)
kwargs = dict(zip(args.keys(), self.input_tensors))
o = func(**kwargs)
except RuntimeError as e:
if 'device' in kwargs:
kwargs['device'] = 0
o = func(**kwargs)
else:
raise e
if inplace:
self.input_tensors.clear()
self.input_tensors.extend(tmp_inputs)
if len(self.output_names) == 1:
self.output_tensors.append(o)
else:
self.output_tensors.extend(o)
def to_tfl_tensors(
self, names, tensors, has_buffers=None, graph_converter=None, non_existent_as_buffer=False
) -> typing.List[tfl.Tensor]:
tfl_tensors = []
if has_buffers is None:
has_buffers = [None] * len(tensors)
elif type(has_buffers) is bool:
has_buffers = [has_buffers] * len(tensors)
assert len(names) == len(tensors) == len(has_buffers)
for n, t, b in zip(names, tensors, has_buffers):
if b is None:
if graph_converter is not None and n in graph_converter.tensor_map:
t = graph_converter.tensor_map[n]
else:
t = tfl.Tensor(
t, n, has_buffer=non_existent_as_buffer, asymmetric=self.asymmetric, q_type=self.q_type
)
else:
t = tfl.Tensor(t, n, has_buffer=b, asymmetric=self.asymmetric, q_type=self.q_type)
tfl_tensors.append(t)
return tfl_tensors
def find_or_create_input(self, idx, graph_converter):
name = self.input_names[idx]
if name in graph_converter.tensor_map:
return graph_converter.tensor_map[name]
# assert has_buffer, 'only tensors with has_buffer=True can be created at this time,' + \
# ' when you encounter this message, it means some ops in the computation graph is not supported'''
tensor = self.input_tensors[idx]
return tfl.Tensor(tensor, name, has_buffer=True, asymmetric=self.asymmetric, q_type=self.q_type)
def get_unique_attr_name(self):
if self.attr_count == 0:
name = self.output_names[0] + '_attr'
else:
name = self.output_names[0] + f'_attr_{self.attr_count}'
self.attr_count += 1
return name
def get_unique_transform_name(self):
if self.transform_count == 0:
name = self.output_names[0] + '_transform'
else:
name = self.output_names[0] + f'_transform_{self.transform_count}'
self.transform_count += 1
return name
def create_transform_tensor(self, tensor, name=None, quantization=None):
if name is None:
name = self.get_unique_transform_name()
return tfl.Tensor(
tensor, name, has_buffer=False, quantization=quantization, asymmetric=self.asymmetric, q_type=self.q_type
)
def create_attr_tensor(self, tensor, name=None, hybrid=False, quantization=None):
if name is None:
name = self.get_unique_attr_name()
if hybrid:
q_type = np.int8
else:
q_type = self.q_type
tensor = tfl.Tensor(
tensor, name, has_buffer=True, quantization=quantization, asymmetric=self.asymmetric, q_type=q_type
)
if hybrid and self.hybrid_q_type == np.uint8:
tensor.reinterpret_as(self.hybrid_q_type)
return tensor
def unpack_params(self, params):
result = {}
for method in params._method_names():
if not (method.startswith('__') and method.endswith('__')):
result[method] = getattr(params, method)()
state = params.__getstate__()
return result, state
def rescale_weight_scale_for_qnnpack(
self, input_tensor: tfl.Tensor, weight_tensor: tfl.Tensor, output_tensor: tfl.Tensor
):
updated = False
orig_scale = weight_tensor.quantization.scale
while True:
input_product_scale = input_tensor.quantization.scale * weight_tensor.quantization.scale
scale = input_product_scale / output_tensor.quantization.scale
shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23)
if shift >= 32:
updated = True
weight_tensor.quantization.scale *= 10
else:
break
if updated:
cur_scale = weight_tensor.quantization.scale
log.info(f'rescale quantized weight of {weight_tensor.name}: {orig_scale:.8f}->{cur_scale:.8f}')
def quantize_numpy(self, tensor, scale, zero_point, dtype=np.uint8):
q_tensor = np.rint(tensor / scale + zero_point)
type_info = np.iinfo(dtype)
if np.any(q_tensor > type_info.max):
warnings.warn('Overflow while quantizing the tensor')
q_tensor = np.minimum(q_tensor, type_info.max)
if np.any(q_tensor < type_info.min):
warnings.warn('Underflow while quantizing the tensor')
q_tensor = np.maximum(q_tensor, type_info.min)
q_tensor = q_tensor.astype(dtype)
return q_tensor
def quantize(self, tensor, scale, zero_point, dtype=torch.uint8, dim=None):
if isinstance(scale, list):
scale = torch.tensor(scale)
if isinstance(zero_point, list):
zero_point = torch.tensor(zero_point)
q_tensor = torch.round(tensor.detach() / scale + zero_point)
type_info = torch.iinfo(dtype)
if (q_tensor > type_info.max).any():
warnings.warn('Overflow while quantizing the tensor')
q_tensor[q_tensor > type_info.max] = type_info.max
if (q_tensor < type_info.min).any():
warnings.warn('Underflow while quantizing the tensor')
q_tensor[q_tensor < type_info.min] = type_info.min
q_tensor = q_tensor.to(dtype=dtype)
if isinstance(scale, torch.Tensor):
scale = scale.tolist()
if isinstance(zero_point, torch.Tensor):
zero_point = zero_point.tolist()
return tfl.FakeQuantTensor(q_tensor, scale, zero_point, dim)
def passthrough(self, graph_converter):
assert len(self.input_tensors) >= len(self.output_tensors)
for i in range(len(self.output_tensors)):
input_tensor = self.input_tensors[i]
inputs = [self.find_or_create_input(i, graph_converter), self.create_attr_tensor(input_tensor.shape)]
outputs = self.to_tfl_tensors(self.output_names, self.output_tensors)
graph_converter.add_operator(tfl.ReshapeOperator(inputs, outputs, input_tensor.shape))
def elementwise_unary(self, converter_class, graph_converter, *args, **kwargs):
inputs = [self.find_or_create_input(0, graph_converter)]
outputs = self.to_tfl_tensors(self.output_names, self.output_tensors)
if inputs[0].buffer is None:
graph_converter.add_operator(converter_class(inputs, outputs, *args, **kwargs))
def elementwise_binary(self, converter_class, graph_converter, autocast, *args, **kwargs):
if autocast:
result_dtype = torch.promote_types(self.input_tensors[0].dtype, self.input_tensors[1].dtype)
for i in range(2):
t = self.input_tensors[i]
if result_dtype != t.dtype:
casted = t.clone().to(dtype=result_dtype)
inp_t = self.find_or_create_input(i, graph_converter)
if inp_t.buffer is None:
new_inp = self.create_transform_tensor(casted)
graph_converter.add_operator(
tfl.CastOperator(
[inp_t],
[new_inp],
tfl.torch_tflite_dtype_mappings[t.dtype],
tfl.torch_tflite_dtype_mappings[result_dtype],
)
)
self.input_names[i] = new_inp.name
self.input_tensors[i] = casted
inputs = [self.find_or_create_input(i, graph_converter) for i in range(2)]
if not all((t.buffer is not None for t in inputs)):
outputs = self.to_tfl_tensors(self.output_names, self.output_tensors)
graph_converter.add_operator(converter_class(inputs, outputs, *args, **kwargs))
def reshape(self, graph_converter):
new_shape = np.array(self.output_tensors[0].shape, dtype='int32')
inputs = [self.find_or_create_input(0, graph_converter), self.create_attr_tensor(new_shape)]
outputs = self.to_tfl_tensors(self.output_names, self.output_tensors)
graph_converter.add_operator(tfl.ReshapeOperator(inputs, outputs, new_shape))
def wrap_ops_with_dequant_quants(
self, ops: typing.List[tfl.BaseOperator], input_idx: int = 0, output_idx: int = 0
) -> typing.List[tfl.BaseOperator]:
orig_input = ops[0].inputs[input_idx]
orig_output = ops[-1].outputs[output_idx]
new_input = self.create_transform_tensor(orig_input.tensor.astype('float32'))
new_output = self.create_transform_tensor(orig_output.tensor.astype('float32'))
dequant_op = tfl.DequantizeOperator([orig_input], [new_input])
quant_op = tfl.QuantizeOperator([new_output], [orig_output])
ops[0].inputs[input_idx] = new_input
ops[-1].outputs[output_idx] = new_output
return [dequant_op] + ops + [quant_op]
def wrap_ops_with_2d_3d_reshapes(
self, ops: typing.List[tfl.BaseOperator], input_idx: int = 0, output_idx: int = 0
) -> typing.List[tfl.BaseOperator]:
orig_input = ops[0].inputs[input_idx]
orig_output = ops[-1].outputs[output_idx]
input_shape = np.array(orig_input.tensor.shape[1:], dtype='int32')
output_shape = np.array(orig_output.tensor.shape, dtype='int32')
input_shape_tensor = self.create_attr_tensor(input_shape)
output_shape_tensor = self.create_attr_tensor(output_shape)
new_input = self.create_transform_tensor(
orig_input.tensor.reshape(input_shape), quantization=orig_input.quantization
)
new_output = self.create_transform_tensor(
orig_output.tensor.reshape(output_shape[1:]), quantization=orig_output.quantization
)
input_reshape_op = tfl.ReshapeOperator([orig_input, input_shape_tensor], [new_input], input_shape)
output_reshape_op = tfl.ReshapeOperator([new_output, output_shape_tensor], [orig_output], output_shape)
input_reshape_op.extra_hints['direction'] = 'up'
output_reshape_op.extra_hints['direction'] = 'down'
ops[0].inputs[input_idx] = new_input
ops[-1].outputs[output_idx] = new_output
return [input_reshape_op] + ops + [output_reshape_op]
def wrap_ops_with_nhwc_nchw_transposes(
self, ops: typing.List[tfl.BaseOperator], input_idx: int = 0, output_idx: int = 0
) -> typing.List[tfl.BaseOperator]:
orig_input = ops[0].inputs[input_idx]
orig_output = ops[-1].outputs[output_idx]
nhwc2nchw_perm = np.array([0, 3, 1, 2], dtype='int32')
nchw2nhwc_perm = np.array([0, 2, 3, 1], dtype='int32')
nhwc2nchw_perm_tensor = self.create_attr_tensor(nhwc2nchw_perm)
nchw2nhwc_perm_tensor = self.create_attr_tensor(nchw2nhwc_perm)
new_input = self.create_transform_tensor(
np.transpose(orig_input.tensor, nchw2nhwc_perm), quantization=orig_input.quantization
)
new_output = self.create_transform_tensor(
np.transpose(orig_output.tensor, nchw2nhwc_perm), quantization=orig_output.quantization
)
nchw2nhwc_transpose = tfl.TransposeOperator([orig_input, nchw2nhwc_perm_tensor], [new_input])
nhwc2nchw_transpose = tfl.TransposeOperator([new_output, nhwc2nchw_perm_tensor], [orig_output])
nchw2nhwc_transpose.extra_hints['direction'] = 'up'
nhwc2nchw_transpose.extra_hints['direction'] = 'down'
ops[0].inputs[input_idx] = new_input
ops[-1].outputs[output_idx] = new_output
return [nchw2nhwc_transpose] + ops + [nhwc2nchw_transpose]
def wrap_ops_with_last_dim_transposes(
self, ops: typing.List[tfl.BaseOperator], dim: int, input_idx: int = 0, output_idx: int = 0
) -> typing.List[tfl.BaseOperator]:
orig_input = ops[0].inputs[input_idx]
orig_output = ops[-1].outputs[output_idx]
assert len(orig_input.shape) == len(orig_output.shape), "Numbers of dimensions mismatch"
n_dim = len(orig_input.shape)
if n_dim == dim:
return ops
last_dim_perm = np.array([i for i in range(n_dim) if i != dim] + [dim], dtype='int32')
rev_last_dim_perm = np.argsort(last_dim_perm).astype('int32')
last_dim_perm_tensor = self.create_attr_tensor(last_dim_perm)
rev_last_dim_perm_tensor = self.create_attr_tensor(rev_last_dim_perm)
new_input = self.create_transform_tensor(
np.transpose(orig_input.tensor, last_dim_perm), quantization=orig_input.quantization
)
new_output = self.create_transform_tensor(
np.transpose(orig_output.tensor, last_dim_perm), quantization=orig_output.quantization
)
last_dim_transpose = tfl.TransposeOperator([orig_input, last_dim_perm_tensor], [new_input])
rev_last_dim_transpose = tfl.TransposeOperator([new_output, rev_last_dim_perm_tensor], [orig_output])
last_dim_transpose.extra_hints['direction'] = 'up'
rev_last_dim_transpose.extra_hints['direction'] = 'down'
ops[0].inputs[input_idx] = new_input
ops[-1].outputs[output_idx] = new_output
return [last_dim_transpose] + ops + [rev_last_dim_transpose]
def handle_padding(self, pad_h, pad_w, pad_op_index, ops, ceil_mode=False):
fill_nan = False
if ceil_mode:
input_tensor = ops[0].inputs[0]
kernel_size = [ops[1].filterHeight, ops[1].filterWidth]
stride = [ops[1].strideH, ops[1].strideW]
padding = [pad_h, pad_w]
input_size = [input_tensor.shape[2], input_tensor.shape[3]]
if not all((i + 2 * p - k) % s == 0 for i, p, k, s in zip(input_size, padding, kernel_size, stride)):
assert type(ops[1]) is tfl.MaxPool2dOperator, 'ceil_mode=True for AvgPool not supported'
fill_nan = True
ceil_pad = get_pool_ceil_padding(input_tensor, kernel_size, stride, padding)
ceil_pad = list(np.add(ceil_pad, padding))
if pad_h + pad_w > 0:
pad = [[0, 0], [pad_h, pad_h], [pad_w, pad_w], [0, 0]]
pad_tensor = self.create_attr_tensor(np.array(pad, dtype='int32'))
pad_input = ops[pad_op_index - 1].outputs[0]
inputs = [pad_input, pad_tensor]
if type(ops[1]) is tfl.MaxPool2dOperator:
constant_tensor = self.get_minimum_constant(pad_input)
inputs.append(constant_tensor)
pad_array = np.pad(pad_input.tensor, pad, constant_values=constant_tensor.tensor[0])
else:
pad_array = np.pad(pad_input.tensor, pad)
pad_out = self.create_transform_tensor(pad_array, quantization=pad_input.quantization)
ops[pad_op_index].inputs[0] = pad_out
if len(inputs) > 2:
pad_op = tfl.Padv2Operator(inputs, [pad_out])
else:
pad_op = tfl.PadOperator(inputs, [pad_out])
ops.insert(pad_op_index, pad_op)
if fill_nan:
fill_nan_index = pad_op_index + 1 if pad_h + pad_w > 0 else pad_op_index
pad = [[0, 0], [0, ceil_pad[0]], [0, ceil_pad[1]], [0, 0]]
pad_tensor = self.create_attr_tensor(np.array(pad, dtype='int32'))
pad_input = ops[fill_nan_index - 1].outputs[0]
constant_tensor = self.get_minimum_constant(pad_input)
pad_array = np.pad(pad_input.tensor, pad, constant_values=constant_tensor.tensor[0])
pad_out = self.create_transform_tensor(pad_array, quantization=pad_input.quantization)
ops[fill_nan_index].inputs[0] = pad_out
pad_op = tfl.Padv2Operator([pad_input, pad_tensor, constant_tensor], [pad_out])
ops.insert(fill_nan_index, pad_op)
def get_minimum_constant(self, ref_tensor):
if ref_tensor.quantization is not None:
if self.q_type == np.uint8:
nan = 0
constant_arr = tfl.FakeQuantTensor(
np.zeros(1, dtype=ref_tensor.dtype),
ref_tensor.quantization.scale,
ref_tensor.quantization.zero_point,
)
else:
nan = -128
constant_arr = tfl.FakeQuantTensor(
np.array([-128], dtype=ref_tensor.dtype),
ref_tensor.quantization.scale,
ref_tensor.quantization.zero_point,
)
else:
nan = np.finfo(np.float32).min
constant_arr = np.array([nan], dtype='float32')
constant_tensor = self.create_attr_tensor(constant_arr)
return constant_tensor
def handle_reduce(self, converter_class, input_args, graph_converter, transpose_opt, *args, **kwargs):
input_tensor = self.find_or_create_input(0, graph_converter)
if 'dim' in input_args and 'keepdim' in input_args:
dims, keep_dim = self.input_tensors[1:3]
if type(dims) not in (list, tuple):
dims = [dims]
if len(dims) == 0:
dims = list(range(input_tensor.tensor.ndim))
self.output_tensors[0] = self.output_tensors[0].view(1)
else:
dims = list(range(input_tensor.tensor.ndim))
keep_dim = False
self.output_tensors[0] = self.output_tensors[0].view(1)
for idx, dim in enumerate(dims):
if dim < 0:
dims[idx] += input_tensor.tensor.ndim
ops = []
transpose = False
if transpose_opt:
# For some ops the codepath is optimized for nhwc.
# For example, for tfl.Mean, if it is a pooling 2d op, consider wrapping it with transposes
if len(input_tensor.shape) == 4 and keep_dim in (1, True):
if dims == [2, 3]:
dims = [1, 2]
transpose = True
elif dims == [3, 2]:
dims = [2, 1]
transpose = True
dim_tensor = self.create_attr_tensor(np.array(dims, dtype='int32'))
inputs = [input_tensor, dim_tensor]
outputs = self.to_tfl_tensors(self.output_names, self.output_tensors)
if len(outputs) > 1:
log.warning(
'Reduce ops like `torch.min` have multiple outputs. However, only the first '
'output will be preserved in our converter. If you need that tensor, please '
'use the `torch.argmin` instead.'
)
outputs = outputs[:1]
if (
hasattr(converter_class, '__init__')
and 'keepDims' in inspect.signature(converter_class.__init__).parameters
):
ops.append(converter_class(inputs, outputs, keep_dim, *args, **kwargs))
else:
if keep_dim:
output_tensor = outputs[0]
transform = self.create_transform_tensor(np.squeeze(output_tensor.tensor, tuple(dims)))
ops.append(converter_class(inputs, [transform], *args, **kwargs))
shape_tensor = self.create_attr_tensor(np.array(output_tensor.shape, dtype='int32'))
ops.append(tfl.ReshapeOperator([transform, shape_tensor], [output_tensor], shape_tensor.tensor))
else:
ops.append(converter_class(inputs, outputs, *args, **kwargs))
if transpose:
if keep_dim:
ops = self.wrap_ops_with_nhwc_nchw_transposes(ops)
else:
orig_input = ops[0].inputs[0]
nchw2nhwc_perm = np.array([0, 2, 3, 1], dtype='int32')
nchw2nhwc_perm_tensor = self.create_attr_tensor(nchw2nhwc_perm)
new_input = self.create_transform_tensor(
np.transpose(orig_input.tensor, nchw2nhwc_perm), quantization=orig_input.quantization
)
nchw2nhwc_transpose = tfl.TransposeOperator([orig_input, nchw2nhwc_perm_tensor], [new_input])
ops[0].inputs[0] = new_input
ops.insert(0, nchw2nhwc_transpose)
for op in ops:
graph_converter.add_operator(op)
def quantize_scalar_tensor(self, tensor: torch.Tensor):
assert tensor.numel() == 1
assert tensor.dtype == torch.float32
if not tensor.is_nonzero():
if self.q_type in (np.uint8, np.int16):
return torch.quantize_per_tensor(tensor, 0.5, 128, torch.quint8)
elif self.q_type == np.int8:
return torch.quantize_per_tensor(tensor, 0.5, 0, torch.qint8)
elif (torch.sign(tensor) < 0).all():
if self.q_type == np.uint8:
return torch.quantize_per_tensor(tensor, -tensor[0] / 127, 255, torch.quint8)
elif self.q_type == np.int8:
return torch.quantize_per_tensor(tensor, -tensor[0] / 127, 0, torch.qint8)
elif self.q_type == np.int16:
return torch.quantize_per_tensor(tensor, -tensor[0] / 127, 128, torch.quint8)
else:
if self.q_type == np.uint8:
return torch.quantize_per_tensor(tensor, tensor[0] / 127, 0, torch.quint8)
elif self.q_type == np.int8:
return torch.quantize_per_tensor(tensor, tensor[0] / 127, 0, torch.qint8)
elif self.q_type == np.int16:
return torch.quantize_per_tensor(tensor, tensor[0] / 127, 128, torch.quint8)
def torch_tensor_from_scalar(self, ref_tensor: torch.Tensor, src_tensor: torch.Tensor):
tgt_tensor = src_tensor
if not isinstance(src_tensor, torch.Tensor):
if ref_tensor.is_quantized:
tgt_tensor = torch.quantize_per_tensor(
torch.tensor([src_tensor], dtype=torch.float32),
ref_tensor.q_scale(),
ref_tensor.q_zero_point(),
ref_tensor.dtype,
)
else:
tgt_tensor = torch.tensor([src_tensor], dtype=ref_tensor.dtype)
return tgt_tensor
def get_prop_from_node(node, prop, assert_type=None, return_type=False):
output_name = next(node.outputs()).debugName()
if prop in node.attributeNames():
vk = node.kindOf(prop)
if assert_type is not None and vk != assert_type:
return None
if vk == 'i':
v = getattr(node, vk)(prop)
elif vk == 'f':
v = getattr(node, vk)(prop)
elif vk == 's':
v = getattr(node, vk)(prop)
elif vk == 'g':
v = getattr(node, vk)(prop)
elif vk == 't':
v = getattr(node, vk)(prop)
if v.dtype == torch.float64:
log.warning(
f'{output_name} is of type float64, which is unsupported in TFLite, trying to downcast to float32'
)
v = v.to(dtype=torch.float32)
elif node.output().type().isSubtypeOf(torch._C.ListType.ofInts()) or node.output().type().isSubtypeOf(
torch._C.ListType.ofFloats()
):
v = node.output().toIValue()
elif vk == 'ival':
v = node.output().toIValue()
else:
log.warning(f'Skip unsupported constant generation for {output_name}, type: {vk}')
raise StopIteration
else:
v = None
vk = None
if return_type:
return v, vk
else:
return v
def fp32_to_bits(val):
b = np.float32(val).tobytes()
return np.frombuffer(b, dtype='uint32')[0]
def get_pool_ceil_padding(input, kernel_size, stride, padding):
# Copied from the PyTorch repo
# https://github.com/pytorch/pytorch/blob/master/torch/onnx/symbolic_opset9.py
sizes = input.shape
dim = sizes[-len(padding) :] if sizes is not None else None
ceiled_output_dim = [
int(math.ceil((dim[i] + 2 * padding[i] - kernel_size[i]) / float(stride[i]))) + 1
for i in range(0, len(padding))
]
# ensure last pooling starts inside
ceiled_output_dim = [
ceiled_output_dim[i] - 1
if (((ceiled_output_dim[i] - 1) * stride[i]) >= (dim[i] + padding[i]))
else ceiled_output_dim[i]
for i in range(0, len(ceiled_output_dim))
]
padding_ceil = [
0
if (stride[i] == 1)
else (kernel_size[i] - (dim[i] + 2 * padding[i] - ((ceiled_output_dim[i] - 1) * stride[i] + 1)))
for i in range(0, len(padding))
]
# ensure padding is not > kernel_size
padding_ceil = [
(int(padding_ceil[i]) if padding_ceil[i] < kernel_size[i] - 1 else int(kernel_size[i] - 1))
if ((padding_ceil[i] + 2 * padding[i]) >= (kernel_size[i]))
else int(padding_ceil[i])
for i in range(0, len(padding_ceil))
]
return padding_ceil
class NoTrackOperator(OperatorConverter):
def parse(self, node, attrs, args, graph_converter):
super().parse(node, attrs, args, graph_converter)
self.run(node)
class TrackQParamsOperator(OperatorConverter):
def parse(self, node, attrs, args, graph_converter):
super().parse(node, attrs, args, graph_converter)
self.run(node)
t = self.find_or_create_input(0, graph_converter)
graph_converter.q_mapping[self.output_names[0]] = t
class TrackRevQParamsOperator(OperatorConverter):
def parse(self, node, attrs, args, graph_converter):
super().parse(node, attrs, args, graph_converter)
self.run(node)
t = self.to_tfl_tensors(self.output_names, self.output_tensors)[0]
graph_converter.rev_q_mapping[self.input_names[0]] = t
class TrackConstantOperator(OperatorConverter):
def parse(self, node, attrs, args, graph_converter):
super().parse(node, attrs, args, graph_converter)
self.run(node)
t = self.find_or_create_input(0, graph_converter)
graph_converter.constant_mapping[self.output_names[0]] = t
class PrimOperatorConverter(OperatorConverter):
# prim::* ops needs custom implementation
def run(self, node):
pass