-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathQNN.py
182 lines (142 loc) · 4.68 KB
/
QNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import pennylane as qml
from pennylane import numpy as np
from pennylane.templates import RandomLayers
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
n_epochs = 30
n_layers = 1
n_train = 50
n_test = 30
SAVE_PATH = "QNN/"
PREPROCESS = True
np.random.seed(0)
tf.random.set_seed(0)
# Loading dataset
mnist_dataset = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist_dataset.load_data()
# Reduce
train_images = train_images[:n_train]
train_labels = train_labels[:n_train]
test_images = test_images[:n_test]
test_labels = test_labels[:n_test]
# Normalize
train_images = train_images / 255
test_images = test_images / 255
# Extra dimension
train_images = np.array(train_images[..., tf.newaxis], requires_grad=False)
test_images = np.array(test_images[..., tf.newaxis], requires_grad=False)
# Quantum circuit as a convolution kernel
dev = qml.device("default.qubit", wires=4)
# Random parameters
rand_params = np.random.uniform(high=2 * np.pi, size=(n_layers, 4))
@qml.qnode(dev)
def circuit(phi):
for j in range(4):
qml.RY(np.pi * phi[j], wires=j)
# Random quantum circuit
RandomLayers(rand_params, wires=list(range(4)))
return [qml.expval(qml.PauliZ(j)) for j in range(4)]
def quanv(image):
out = np.zeros((14, 14, 4))
for j in range(0, 28, 2):
for k in range(0, 28, 2):
q_results = circuit(
[
image[j, k, 0],
image[j, k + 1, 0],
image[j + 1, k, 0],
image[j + 1, k + 1, 0]
]
)
for c in range(4):
out[j // 2, k // 2, c] = q_results[c]
return out
# Quantum pre-processing
if PREPROCESS == True:
q_train_images = []
print("Quantum pre-processing of train images:")
for idx, img in enumerate(train_images):
print("{}/{} ".format(idx + 1, n_train), end="\r")
q_train_images.append(quanv(img))
q_train_images = np.asarray(q_train_images)
q_test_images = []
print("\nQuantum pre-processing of test images:")
for idx, img in enumerate(test_images):
print("{}/{} ".format(idx + 1, n_test), end="\r")
q_test_images.append(quanv(img))
q_test_images = np.asarray(q_test_images)
np.save(SAVE_PATH + "q_train_images.npy", q_train_images)
np.save(SAVE_PATH + "q_test_images.npy", q_test_images)
# Load pre-processed images
q_train_images = np.load(SAVE_PATH + "q_train_images.npy")
q_test_images = np.load(SAVE_PATH + "q_test_images.npy")
# Visualize some samples
n_samples = 4
n_channels = 4
fig, axes = plt.subplots(1 + n_channels, n_samples, figsize=(10, 10))
for k in range(n_samples):
axes[0, 0].set_ylabel("Input")
if k != 0:
axes[0, k].yaxis.set_visible(False)
axes[0, k].imshow(train_images[k, :, :, 0], cmap="gray")
# Plot all output channels
for c in range(n_channels):
axes[c + 1, 0].set_ylabel("Output [ch. {}]".format(c))
if k != 0:
axes[c, k].yaxis.set_visible(False)
axes[c + 1, k].imshow(q_train_images[k, :, :, c], cmap="gray")
plt.tight_layout()
plt.show()
# Hybrid quantum-classical model
def MyModel():
"""Initializes and returns a custom Keras model
which is ready to be trained."""
model = keras.models.Sequential([
keras.layers.Flatten(),
keras.layers.Dense(10, activation="softmax")
])
model.compile(
optimizer='adam',
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
return model
# Training
q_model = MyModel()
q_history = q_model.fit(
q_train_images,
train_labels,
validation_data=(q_test_images, test_labels),
batch_size=4,
epochs=n_epochs,
verbose=2,
)
# Compare with a classsical model with no quantum pre-prossessing layer
c_model = MyModel()
c_history = c_model.fit(
train_images,
train_labels,
validation_data=(test_images, test_labels),
batch_size=4,
epochs=n_epochs,
verbose=2,
)
# Quantum/Classical Results
import matplotlib.pyplot as plt
plt.style.use("seaborn")
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 9))
ax1.plot(q_history.history["val_accuracy"], "-ob", label="With quantum layer")
ax1.plot(c_history.history["val_accuracy"], "-og", label="Without quantum layer")
ax1.set_ylabel("Accuracy")
ax1.set_ylim([0, 1])
ax1.set_xlabel("Epoch")
ax1.legend()
ax2.plot(q_history.history["val_loss"], "-ob", label="With quantum layer")
ax2.plot(c_history.history["val_loss"], "-og", label="Without quantum layer")
ax2.set_ylabel("Loss")
ax2.set_ylim(top=2.5)
ax2.set_xlabel("Epoch")
ax2.legend()
plt.tight_layout()
plt.show()