forked from zama-ai/concrete-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
386 lines (308 loc) · 14.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# MIT License
#
# Copyright (c) 2019 Xilinx
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Original file can be found at https://github.com/Xilinx/brevitas/blob/8c3d9de0113528cf6693c6474a13d802a66682c6/src/brevitas_examples/bnn_pynq/logger.py
import os
import random
import time
from datetime import datetime
from pathlib import Path
from typing import List, Tuple, Union
import torch
import torch.optim as optim
from logger import EvalEpochMeters, Logger, TrainingEpochMeters
from models import model_with_cfg
from torch import nn
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.datasets import CIFAR10
def accuracy(
output: torch.Tensor, target: torch.Tensor, topk: Tuple[int] = (1,)
) -> List[torch.FloatTensor]:
"""Computes the accuracy over the k top predictions for the specified values of k.
In top-5 accuracy you give yourself credit for having the right answer if the right answer
appears in your top five guesses.
Taken from https://discuss.pytorch.org/t/top-k-error-calculation/48815/2.
Args:
output (torch.Tensor): The prediction of the model (scores, logits, raw y_pred) before
normalization or getting classes
target (torch.Tensor) : The target data representing the truth.
topk (Tuple[int]): Tuple of topk's to compute top 1, top 2 and top 5.
Returns:
list_topk_accs (List[torch.FloatTensor]): The list of topk accuracies [top1st, top2nd, ...]
depending on the topk input.
"""
with torch.no_grad():
# Get the largest k and batch size
max_k = max(topk)
batch_size = target.size(0)
# Get top max_k indices that correspond to the most likely probability scores
_, y_pred = output.topk(k=max_k, dim=1)
# Transpose it to shape [max_k, batch_size]
y_pred = y_pred.t()
# Get the credit for each example if the models predictions is in max_k values
target_reshaped = target.view(1, -1).expand_as(y_pred)
# Compare every topk's model prediction with the ground truth
correct = y_pred == target_reshaped
# Compute topk accuracies
list_topk_accs = []
for k in topk:
# Get topk answers as a float tensor (1.0 and 0.0)
# The clone is necessary here in order to avoid miss-representations
topk_matched_truth = correct[:k].reshape(-1).clone().float()
# Get the total of right matches
total_correct_topk = topk_matched_truth.sum(dim=0, keepdim=True)
# Compute and store the topk accuracy for this batch (and k)
topk_acc = total_correct_topk / batch_size
list_topk_accs.append(topk_acc)
return list_topk_accs
def get_train_set(dataset: str, datadir: Union[str, Path]) -> Dataset:
"""Retrieve a dataset's training set.
Args:
dataset (str): The dataset's name.
datadir (Union[str, Path]): The dataset's directory path to consider.
Returns:
train_set (Dataset): The training set.
"""
if dataset == "CIFAR10":
# Transform pipeline that normalizes the data between -1 and 1
transformations = [
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Lambda(lambda x: 2.0 * x - 1.0),
]
transform_train = transforms.Compose(transformations)
builder = CIFAR10
else:
raise Exception(f"Dataset not supported: {dataset}")
train_set = builder(root=datadir, train=True, download=True, transform=transform_train)
return train_set
def get_test_set(dataset: str, datadir: Union[str, Path]) -> Dataset:
"""Retrieve a dataset's test set.
Args:
dataset (str): The dataset's name.
datadir (Union[str, Path]): The dataset's directory path to consider.
Returns:
train_set (Dataset): The test set.
"""
if dataset == "CIFAR10":
# Transform pipeline that normalizes the data between -1 and 1
transformations = [
transforms.ToTensor(),
transforms.Lambda(lambda x: 2.0 * x - 1.0),
]
transform_test = transforms.Compose(transformations)
builder = CIFAR10
else:
raise Exception(f"Dataset not supported: {dataset}")
test_set = builder(root=datadir, train=False, download=True, transform=transform_test)
return test_set
class Trainer(object):
def __init__(self, args):
model, cfg = model_with_cfg(args.network, args.pre_trained)
# Init arguments
self.args = args
prec_name = "_{}W{}A".format(
cfg.getint("QUANT", "WEIGHT_BIT_WIDTH"), cfg.getint("QUANT", "ACT_BIT_WIDTH")
)
experiment_name = "{}{}_{}".format(
args.network, prec_name, datetime.now().strftime("%Y%m%d_%H%M%S")
)
self.output_dir_path = os.path.join(args.experiments, experiment_name)
if self.args.resume:
self.output_dir_path, _ = os.path.split(args.resume)
self.output_dir_path, _ = os.path.split(self.output_dir_path)
if not args.dry_run:
self.checkpoints_dir_path = os.path.join(self.output_dir_path, "checkpoints")
if not args.resume:
os.mkdir(self.output_dir_path)
os.mkdir(self.checkpoints_dir_path)
self.logger = Logger(self.output_dir_path, args.dry_run)
# Randomness
random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
dataset = cfg.get("MODEL", "DATASET")
train_set = get_train_set(dataset, args.datadir)
test_set = get_test_set(dataset, args.datadir)
self.train_loader = DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers
)
self.test_loader = DataLoader(
test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers
)
# Init starting values
self.starting_epoch = 1
self.best_val_acc = 0
# Setup device
if args.gpus is not None:
args.gpus = [int(i) for i in args.gpus.split(",")]
self.device = "cuda:" + str(args.gpus[0])
torch.backends.cudnn.benchmark = True
else:
# Add MPS (for macOS with Apple Silicon or AMD GPUs) support when error is fixed. For
# now, we observe a decrease in torch's top1 accuracy when using MPS devices
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/3953
self.device = "cpu"
self.device = torch.device(self.device)
# Resume checkpoint, if any
if args.resume:
print("Loading model checkpoint at: {}".format(args.resume))
package = torch.load(args.resume, map_location="cpu")
model_state_dict = package["state_dict"]
model.load_state_dict(model_state_dict, strict=args.strict)
if args.gpus is not None and len(args.gpus) > 1:
model = nn.DataParallel(model, args.gpus)
else:
model = model.to(device=self.device)
self.model = model
# Loss functions
self.criterion = nn.CrossEntropyLoss()
self.criterion = self.criterion.to(device=self.device)
# Init optimizer
if args.optim == "ADAM":
self.optimizer = optim.Adam(
self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
elif args.optim == "SGD":
self.optimizer = optim.SGD(
self.model.parameters(),
lr=self.args.lr,
momentum=self.args.momentum,
weight_decay=self.args.weight_decay,
)
# Resume optimizer, if any
if args.resume and not args.evaluate:
self.logger.log.info("Loading optimizer checkpoint")
if "optim_dict" in package.keys():
self.optimizer.load_state_dict(package["optim_dict"])
if "epoch" in package.keys():
self.starting_epoch = package["epoch"]
if "best_val_acc" in package.keys():
self.best_val_acc = package["best_val_acc"]
# LR scheduler
if args.scheduler == "STEP":
milestones = [int(i) for i in args.milestones.split(",")]
self.scheduler = MultiStepLR(optimizer=self.optimizer, milestones=milestones, gamma=0.1)
elif args.scheduler == "FIXED":
self.scheduler = None
else:
raise Exception("Unrecognized scheduler {}".format(self.args.scheduler))
# Resume scheduler, if any
if args.resume and not args.evaluate and self.scheduler is not None:
self.scheduler.last_epoch = package["epoch"] - 1
def checkpoint_best(self, epoch, name):
best_path = os.path.join(self.checkpoints_dir_path, name)
self.logger.info("Saving checkpoint model to {}".format(best_path))
torch.save(
{
"state_dict": self.model.state_dict(),
"optim_dict": self.optimizer.state_dict(),
"epoch": epoch + 1,
"best_val_acc": self.best_val_acc,
},
best_path,
)
def train_model(self):
# training starts
if self.args.detect_nan:
torch.autograd.set_detect_anomaly(True)
for epoch in range(self.starting_epoch, self.args.epochs):
# Set to training mode
self.model.train()
self.criterion.train()
# Init metrics
epoch_meters = TrainingEpochMeters()
start_data_loading = time.time()
for i, data in enumerate(self.train_loader):
(input, target) = data
input = input.to(self.device, non_blocking=True)
target = target.to(self.device, non_blocking=True)
target_var = target
# measure data loading time
epoch_meters.data_time.update(time.time() - start_data_loading)
# Training batch starts
start_batch = time.time()
output = self.model(input)
loss = self.criterion(output, target_var)
# compute gradient and do SGD step
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.model.clip_weights(-1, 1)
# measure elapsed time
epoch_meters.batch_time.update(time.time() - start_batch)
if i % int(self.args.log_freq) == 0 or i == len(self.train_loader) - 1:
prec1, prec5 = accuracy(output.detach(), target, topk=(1, 5))
epoch_meters.losses.update(loss.item(), input.size(0))
epoch_meters.top1.update(prec1.item(), input.size(0))
epoch_meters.top5.update(prec5.item(), input.size(0))
self.logger.training_batch_cli_log(
epoch_meters, epoch, i, len(self.train_loader)
)
# training batch ends
start_data_loading = time.time()
# Set the learning rate
if self.scheduler is not None:
self.scheduler.step(epoch)
else:
# Set the learning rate
if epoch % 40 == 0:
self.optimizer.param_groups[0]["lr"] *= 0.5
# Perform eval
with torch.no_grad():
top1avg = self.eval_model(epoch)
# checkpoint
if top1avg >= self.best_val_acc and not self.args.dry_run:
self.best_val_acc = top1avg
self.checkpoint_best(epoch, "best.tar")
elif not self.args.dry_run:
self.checkpoint_best(epoch, "checkpoint.tar")
# training ends
if not self.args.dry_run:
return os.path.join(self.checkpoints_dir_path, "best.tar")
def eval_model(self, epoch=None):
eval_meters = EvalEpochMeters()
# switch to evaluate mode
self.model.eval()
self.criterion.eval()
for i, data in enumerate(self.test_loader):
end = time.time()
(input, target) = data
input = input.to(self.device, non_blocking=True)
target = target.to(self.device, non_blocking=True)
# compute output
output = self.model(input)
# measure model elapsed time
eval_meters.model_time.update(time.time() - end)
end = time.time()
# compute loss
loss = self.criterion(output, target)
eval_meters.loss_time.update(time.time() - end)
prec1, prec5 = accuracy(output, target, topk=(1, 5))
eval_meters.losses.update(loss.item(), input.size(0))
eval_meters.top1.update(prec1.item(), input.size(0))
eval_meters.top5.update(prec5.item(), input.size(0))
# Eval batch ends
self.logger.eval_batch_cli_log(eval_meters, i, len(self.test_loader))
return eval_meters.top1.avg