-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnilness.go
374 lines (331 loc) · 10.8 KB
/
nilness.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// This file was copy from https://cs.opensource.google/go/x/tools/+/master:go/analysis/passes/nilness/nilness.go
// I modified some to check the error return
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package nilnesserr
import (
"go/token"
"go/types"
"github.com/alingse/nilnesserr/internal/typeparams"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/buildssa"
"golang.org/x/tools/go/ssa"
)
func (a *analyzer) checkNilnesserr(pass *analysis.Pass) (interface{}, error) {
ssainput := pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA)
for _, fn := range ssainput.SrcFuncs {
runFunc(pass, fn)
}
return nil, nil
}
func runFunc(pass *analysis.Pass, fn *ssa.Function) {
// visit visits reachable blocks of the CFG in dominance order,
// maintaining a stack of dominating nilness facts.
//
// By traversing the dom tree, we can pop facts off the stack as
// soon as we've visited a subtree. Had we traversed the CFG,
// we would need to retain the set of facts for each block.
seen := make([]bool, len(fn.Blocks)) // seen[i] means visit should ignore block i
var visit func(b *ssa.BasicBlock, stack []fact, errors []errFact)
visit = func(b *ssa.BasicBlock, stack []fact, errors []errFact) {
if seen[b.Index] {
return
}
seen[b.Index] = true
// check this block return a nil value error
checkNilnesserr(
pass, b,
errors,
func(v ssa.Value) bool {
return nilnessOf(stack, v) == isnil
})
// For nil comparison blocks, report an error if the condition
// is degenerate, and push a nilness fact on the stack when
// visiting its true and false successor blocks.
if binop, tsucc, fsucc := eq(b); binop != nil {
// extract the err != nil or err == nil
errValue := extractCheckedErrorValue(binop)
xnil := nilnessOf(stack, binop.X)
ynil := nilnessOf(stack, binop.Y)
if ynil != unknown && xnil != unknown && (xnil == isnil || ynil == isnil) {
// Degenerate condition:
// the nilness of both operands is known,
// and at least one of them is nil.
// If tsucc's or fsucc's sole incoming edge is impossible,
// it is unreachable. Prune traversal of it and
// all the blocks it dominates.
// (We could be more precise with full dataflow
// analysis of control-flow joins.)
var skip *ssa.BasicBlock
if xnil == ynil {
skip = fsucc
} else {
skip = tsucc
}
for _, d := range b.Dominees() {
if d == skip && len(d.Preds) == 1 {
continue
}
visit(d, stack, errors)
}
return
}
// "if x == nil" or "if nil == y" condition; x, y are unknown.
if xnil == isnil || ynil == isnil {
var newFacts facts
if xnil == isnil {
// x is nil, y is unknown:
// t successor learns y is nil.
newFacts = expandFacts(fact{binop.Y, isnil})
} else {
// y is nil, x is unknown:
// t successor learns x is nil.
newFacts = expandFacts(fact{binop.X, isnil})
}
for _, d := range b.Dominees() {
// Successor blocks learn a fact
// only at non-critical edges.
// (We could do be more precise with full dataflow
// analysis of control-flow joins.)
s := stack
errs := errors
if len(d.Preds) == 1 {
if d == tsucc {
s = append(s, newFacts...)
// add nil error
if errValue != nil {
errs = append(errs, errFact{value: errValue, nilness: isnil})
}
} else if d == fsucc {
s = append(s, newFacts.negate()...)
// add non-nil error
if errValue != nil {
errs = append(errs, errFact{value: errValue, nilness: isnonnil})
}
}
}
visit(d, s, errs)
}
return
}
}
// In code of the form:
//
// if ptr, ok := x.(*T); ok { ... } else { fsucc }
//
// the fsucc block learns that ptr == nil,
// since that's its zero value.
if If, ok := b.Instrs[len(b.Instrs)-1].(*ssa.If); ok {
// Handle "if ok" and "if !ok" variants.
cond, fsucc := If.Cond, b.Succs[1]
if unop, ok := cond.(*ssa.UnOp); ok && unop.Op == token.NOT {
cond, fsucc = unop.X, b.Succs[0]
}
// Match pattern:
// t0 = typeassert (pointerlike)
// t1 = extract t0 #0 // ptr
// t2 = extract t0 #1 // ok
// if t2 goto tsucc, fsucc
if extract1, ok := cond.(*ssa.Extract); ok && extract1.Index == 1 {
if assert, ok := extract1.Tuple.(*ssa.TypeAssert); ok &&
isNillable(assert.AssertedType) {
for _, pinstr := range *assert.Referrers() {
if extract0, ok := pinstr.(*ssa.Extract); ok &&
extract0.Index == 0 &&
extract0.Tuple == extract1.Tuple {
for _, d := range b.Dominees() {
if len(d.Preds) == 1 && d == fsucc {
visit(d, append(stack, fact{extract0, isnil}), errors)
}
}
}
}
}
}
}
for _, d := range b.Dominees() {
visit(d, stack, errors)
}
}
// Visit the entry block. No need to visit fn.Recover.
if fn.Blocks != nil {
visit(fn.Blocks[0], make([]fact, 0, 20), nil) // 20 is plenty
}
}
// A fact records that a block is dominated
// by the condition v == nil or v != nil.
type fact struct {
value ssa.Value
nilness nilness
}
func (f fact) negate() fact { return fact{f.value, -f.nilness} }
type nilness int
const (
isnonnil = -1
unknown nilness = 0
isnil = 1
)
var nilnessStrings = []string{"non-nil", "unknown", "nil"}
func (n nilness) String() string { return nilnessStrings[n+1] }
// nilnessOf reports whether v is definitely nil, definitely not nil,
// or unknown given the dominating stack of facts.
func nilnessOf(stack []fact, v ssa.Value) nilness {
switch v := v.(type) {
// unwrap ChangeInterface and Slice values recursively, to detect if underlying
// values have any facts recorded or are otherwise known with regard to nilness.
//
// This work must be in addition to expanding facts about
// ChangeInterfaces during inference/fact gathering because this covers
// cases where the nilness of a value is intrinsic, rather than based
// on inferred facts, such as a zero value interface variable. That
// said, this work alone would only inform us when facts are about
// underlying values, rather than outer values, when the analysis is
// transitive in both directions.
case *ssa.ChangeInterface:
if underlying := nilnessOf(stack, v.X); underlying != unknown {
return underlying
}
case *ssa.MakeInterface:
// A MakeInterface is non-nil unless its operand is a type parameter.
tparam, ok := types.Unalias(v.X.Type()).(*types.TypeParam)
if !ok {
return isnonnil
}
// A MakeInterface of a type parameter is non-nil if
// the type parameter cannot be instantiated as an
// interface type (#66835).
if terms, err := typeparams.NormalTerms(tparam.Constraint()); err == nil && len(terms) > 0 {
return isnonnil
}
// If the type parameter can be instantiated as an
// interface (and thus also as a concrete type),
// we can't determine the nilness.
case *ssa.Slice:
if underlying := nilnessOf(stack, v.X); underlying != unknown {
return underlying
}
case *ssa.SliceToArrayPointer:
nn := nilnessOf(stack, v.X)
if slice2ArrayPtrLen(v) > 0 {
if nn == isnil {
// We know that *(*[1]byte)(nil) is going to panic because of the
// conversion. So return unknown to the caller, prevent useless
// nil deference reporting due to * operator.
return unknown
}
// Otherwise, the conversion will yield a non-nil pointer to array.
// Note that the instruction can still panic if array length greater
// than slice length. If the value is used by another instruction,
// that instruction can assume the panic did not happen when that
// instruction is reached.
return isnonnil
}
// In case array length is zero, the conversion result depends on nilness of the slice.
if nn != unknown {
return nn
}
}
// Is value intrinsically nil or non-nil?
switch v := v.(type) {
case *ssa.Alloc,
*ssa.FieldAddr,
*ssa.FreeVar,
*ssa.Function,
*ssa.Global,
*ssa.IndexAddr,
*ssa.MakeChan,
*ssa.MakeClosure,
*ssa.MakeMap,
*ssa.MakeSlice:
return isnonnil
case *ssa.Const:
if v.IsNil() {
return isnil // nil or zero value of a pointer-like type
} else {
return unknown // non-pointer
}
}
// Search dominating control-flow facts.
for _, f := range stack {
if f.value == v {
return f.nilness
}
}
return unknown
}
func slice2ArrayPtrLen(v *ssa.SliceToArrayPointer) int64 {
return v.Type().(*types.Pointer).Elem().Underlying().(*types.Array).Len()
}
// If b ends with an equality comparison, eq returns the operation and
// its true (equal) and false (not equal) successors.
func eq(b *ssa.BasicBlock) (op *ssa.BinOp, tsucc, fsucc *ssa.BasicBlock) {
if If, ok := b.Instrs[len(b.Instrs)-1].(*ssa.If); ok {
if binop, ok := If.Cond.(*ssa.BinOp); ok {
switch binop.Op {
case token.EQL:
return binop, b.Succs[0], b.Succs[1]
case token.NEQ:
return binop, b.Succs[1], b.Succs[0]
}
}
}
return nil, nil, nil
}
// expandFacts takes a single fact and returns the set of facts that can be
// known about it or any of its related values. Some operations, like
// ChangeInterface, have transitive nilness, such that if you know the
// underlying value is nil, you also know the value itself is nil, and vice
// versa. This operation allows callers to match on any of the related values
// in analyses, rather than just the one form of the value that happened to
// appear in a comparison.
//
// This work must be in addition to unwrapping values within nilnessOf because
// while this work helps give facts about transitively known values based on
// inferred facts, the recursive check within nilnessOf covers cases where
// nilness facts are intrinsic to the underlying value, such as a zero value
// interface variables.
//
// ChangeInterface is the only expansion currently supported, but others, like
// Slice, could be added. At this time, this tool does not check slice
// operations in a way this expansion could help. See
// https://play.golang.org/p/mGqXEp7w4fR for an example.
func expandFacts(f fact) []fact {
ff := []fact{f}
Loop:
for {
switch v := f.value.(type) {
case *ssa.ChangeInterface:
f = fact{v.X, f.nilness}
ff = append(ff, f)
default:
break Loop
}
}
return ff
}
type facts []fact
func (ff facts) negate() facts {
nn := make([]fact, len(ff))
for i, f := range ff {
nn[i] = f.negate()
}
return nn
}
func isNillable(t types.Type) bool {
// TODO(adonovan): CoreType (+ case *Interface) looks wrong.
// This should probably use Underlying, and handle TypeParam
// by computing the union across its normal terms.
switch t := typeparams.CoreType(t).(type) {
case *types.Pointer,
*types.Map,
*types.Signature,
*types.Chan,
*types.Interface,
*types.Slice:
return true
case *types.Basic:
return t == types.Typ[types.UnsafePointer]
}
return false
}