forked from heyuan7676/COVID-19
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLR_confounders.R
234 lines (188 loc) · 9.48 KB
/
LR_confounders.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
source("utils.R")
###
##Input: gene x TPM matrix, Donor attributes, Sample attributes, covariates (including the genotype PC2)
##All are available from GTEx portal
##Output: "gene_cov_correlations.txt"
##Each row is the test for one gene in one tissue, for either AGE or SEX
###
#Returns table of TPM and covariates for patients with given tissue type
readin_data_in_tissue <- function(tissue){
# sample covariates
sample_in_the_tissue = samples %>% filter(SMTSD == tissue)
# read in genotype PCs
tissue_name = gsub(" ", "_", gsub('\\)', '', gsub(' \\(', '_', gsub(' - ', '_', tissue))))
#print(paste0("Tissue: ", tissue, "; Tis: ",tis))
genotype_PCs = tryCatch(read.table(paste0(datadir, 'GTEx_Analysis_v8_eQTL_covariates/',tissue_name,'.v8.covariates.txt'),
sep='\t', header = T, stringsAsFactors = F, row.names = 1), warning = function (w) {print(paste("No data available for tissue type", tis))}, error = function(f) {return("failed")}
)
if(inherits(genotype_PCs, "character")){
print(paste(" ", "Skipping tissue", tissue_name))
return()
}
genotype_PCs = genotype_PCs[1:5, ]
genotype_PCs = as.data.frame(t(genotype_PCs))
genotype_PCs$SUBJID = rownames(genotype_PCs)
samples_used = rownames(genotype_PCs)
# gene TPM
gene_tpm_in_the_tissue = read.table(paste0(datadir, 'tissue_tpm/', tissue_name, '_gene_TPM.txt'),
sep = '\t', header = T, stringsAsFactors = F, row.names = 1)
gene_tpm_in_the_tissue = log10(gene_tpm_in_the_tissue + 1)
colnames(gene_tpm_in_the_tissue) = sapply(colnames(gene_tpm_in_the_tissue),
function(x) paste(strsplit(x, '\\.')[[1]][1][1], strsplit(x, '\\.')[[1]][2], sep = '.'))
if(Test_gene %in% rownames(gene_tpm_in_the_tissue)){
Test_gene_tpm = data.frame("SUBJID" = samples_used)
Test_gene_tpm$geneEXP = as.numeric(gene_tpm_in_the_tissue[Test_gene, samples_used])
}else if(Test_gene %in% sapply(rownames(gene_tpm_in_the_tissue), function(x) strsplit(x, '\\.')[[1]][1])){
Test_gene_tpm = data.frame("SUBJID" = samples_used)
tpm_matrix_gene_names = sapply(rownames(gene_tpm_in_the_tissue), function(x) strsplit(x, '\\.')[[1]][1])
Test_gene_tpm$geneEXP = as.numeric(gene_tpm_in_the_tissue[which(tpm_matrix_gene_names == Test_gene), samples_used])
}else{
return ()
}
# merge
sample_in_the_tissue$SUBJID = sapply(sample_in_the_tissue$SUBJID, function(x) gsub("-","\\.", x))
df_test = merge(sample_in_the_tissue, Test_gene_tpm, by = 'SUBJID')
df_test = merge(df_test, genotype_PCs, by = 'SUBJID')
return(df_test)
}
#This outputs a table listing each "Tissue", "Gene", "Variable", "Median_TPM","coefficient", "pvalue", FDR
check_Test_gene_LR <- function(){
collect_result = NULL
for(tissue in sort(unique(samples$SMTSD))){
### read in
exp_for_tiss = readin_data_in_tissue(tissue)
if(is.null(exp_for_tiss)){
next
}
print(paste0('Perform LR using confounders for ', tissue))
### remove missing data
exp_for_tiss.complete = exp_for_tiss[complete.cases(exp_for_tiss), ]
#print(paste0("Removed ", dim(exp_for_tiss)[1]-dim(exp_for_tiss.complete)[1], " data points with missing data"))
#print(paste0("Test with ", dim(exp_for_tiss)[1], " data points"))
### fit on geneEXP
model = lm(geneEXP~PC1+PC2+PC3+PC4+PC5+AGE_GROUP+SEX+factor(DTHHRDY)+SMRIN+SMTSISCH+SMEXNCRT,
data = exp_for_tiss.complete)
AGE_GROUP_test = c(tissue, Test_gene_name, "AGE", median(as.numeric(exp_for_tiss$geneEXP)),
summary(model)$coefficients[,1]["AGE_GROUP"],
summary(model)$coefficients[,4]["AGE_GROUP"])
collect_result = rbind(collect_result, AGE_GROUP_test)
# if only one sex, skip this step
# if the tissue has less than 10 samples in either gender group, skip this step
if(sum(table(exp_for_tiss$SEX) < 10) > 0){
SEX_test = c(tissue, Test_gene_name,"SEX",median(as.numeric(exp_for_tiss$geneEXP)), 0, -1)
}else if(length(unique(exp_for_tiss$SEX)) == 2){
SEX_test = c(tissue, Test_gene_name, "SEX", median(as.numeric(exp_for_tiss$geneEXP)),
summary(model)$coefficients[,1]["SEX"],
summary(model)$coefficients[,4]["SEX"])
}else{
SEX_test = c(tissue, Test_gene_name,"SEX",median(as.numeric(exp_for_tiss$geneEXP)), 0, -1)
}
collect_result = rbind(collect_result, SEX_test)
}
collect_result = as.data.frame(collect_result)
colnames(collect_result) = c("Tissue", "Gene", "Variable", "Median_TPM","coefficient", "pvalue")
collect_result$coefficient = as.numeric(as.character(collect_result$coefficient))
collect_result$pvalue = as.numeric(as.character(collect_result$pvalue))
collect_result = collect_result[collect_result$pvalue > -1, ]
collect_result = collect_result[order(collect_result$pvalue), ]
collect_result$Median_TPM = as.numeric(as.character(collect_result$Median_TPM))
collect_result$Median_TPM = 10^(collect_result$Median_TPM) - 1
collect_result = collect_result[collect_result$Median_TPM > 1, ]
collect_result$FDR = p.adjust(collect_result$pvalue, method = 'BH')
collect_result = collect_result[order(collect_result$pvalue), ]
collect_result$Tissue = as.character(collect_result$Tissue)
collect_result$Variable = as.character(collect_result$Variable)
write.table(collect_result, paste0(outdir, 'Association_tests_',Test_gene_name, '_LR.csv'), sep=',', row.names = F)
return(collect_result)
}
### Plot: Gene - SEX
plot_gene_sex <- function(df){
Gene_SEX = df[df$Variable == 'SEX', ]
if(dim(Gene_SEX)[1] == 0){
return ()
}
df_for_plot = NULL
for(i in seq(1, dim(Gene_SEX)[1])){
rowi = Gene_SEX[i, ]
tissue = as.character(rowi['Tissue'])
### read in
exp_for_tiss = readin_data_in_tissue(tissue)
exp_for_tiss.complete = exp_for_tiss[complete.cases(exp_for_tiss), ]
### fit the model
model = lm(geneEXP~PC1+PC2+PC3+PC4+PC5+AGE_GROUP+factor(DTHHRDY)+SMRIN+SMTSISCH+SMEXNCRT,
data = exp_for_tiss.complete)
exp_for_tiss.complete$corrected_expression = model$residuals
df_for_plot = exp_for_tiss.complete[,c("SMTSD", "corrected_expression", "Gender")]
df_for_plot$coefficient = rowi$coefficient
df_for_plot$Median_TPM = rowi$Median_TPM
ggtitle_text = paste0(df_for_plot$SMTSD,
":\n coef = ", round(df_for_plot$coefficient, 3),
":\n median TPM = ", round(df_for_plot$Median_TPM,3))
xlabs = paste(levels(df_for_plot$Gender),"\n(N=",table(df_for_plot$Gender),")",sep="")
g_sex = ggplot(aes(x = Gender, y = corrected_expression), data = df_for_plot) +
geom_boxplot(aes(fill = Gender)) +
ggtitle(ggtitle_text) +
theme_bw() +
scale_x_discrete(labels=xlabs) +
xlab("") +
theme(legend.position = 'none') +
ylab(paste0("Corrected expression of ", Test_gene_name)) +
scale_fill_brewer(palette = 'Set1')
tis_name = gsub(" ", "_", gsub('\\)', '', gsub(' \\(', '_', gsub(' - ', '_', tissue))))
png(paste0(outdir,'plots_LR/', Test_gene_name, '/', Test_gene_name, '_',tis_name,'_SEX_LR.png'),
res = 130, height = 500, width = 600)
print(g_sex)
dev.off()
}
}
### Plot: Gene - AGE
plot_gene_age <- function(df){
Gene_AGE = df[df$Variable == 'AGE', ]
if(dim(Gene_AGE)[1] == 0){
return ()
}
df_for_plot = NULL
for(i in seq(1, dim(Gene_AGE)[1])){
rowi = Gene_AGE[i, ]
tissue = as.character(rowi['Tissue'])
### read in
exp_for_tiss = readin_data_in_tissue(tissue)
exp_for_tiss.complete = exp_for_tiss[complete.cases(exp_for_tiss), ]
### fit the model
model = lm(geneEXP~PC1+PC2+PC3+PC4+PC5+SEX+factor(DTHHRDY)+SMRIN+SMTSISCH+SMEXNCRT,
data = exp_for_tiss.complete)
exp_for_tiss.complete$corrected_expression = model$residuals
df_for_plot = exp_for_tiss.complete[,c("SMTSD","corrected_expression", "AGE")]
df_for_plot$coefficient = rowi$coefficient
df_for_plot$Median_TPM = rowi$Median_TPM
ggtitle_text = paste0(df_for_plot$SMTSD,
":\n coef = ", round(df_for_plot$coefficient, 3),
":\n median TPM = ", round(df_for_plot$Median_TPM,3))
xlabs = paste(names(table(df_for_plot$AGE)),"yr\n(N=",table(df_for_plot$AGE),")",sep="")
g_AGE = ggplot(aes(x = AGE, y = corrected_expression), data = df_for_plot) +
geom_boxplot(aes(fill = AGE)) +
ggtitle(ggtitle_text) +
theme_bw() +
theme(legend.position = 'none') +
scale_x_discrete(labels=xlabs) +
xlab("") +
ylab(paste0("Corrected expression of ", Test_gene_name)) +
scale_fill_brewer(palette = 'Greens')
tis_name = gsub(" ", "_", gsub('\\)', '', gsub(' \\(', '_', gsub(' - ', '_', tissue))))
png(paste0(outdir,'plots_LR/', Test_gene_name, '/', Test_gene_name, '_',tis_name,'_AGE_LR.png'),
res = 130, height = 500, width = 600)
print(g_AGE)
dev.off()
}
}
args <- commandArgs(TRUE)
Test_gene = args[1]
Test_gene_name = args[2]
dir.create(file.path(outdir, "plots_LR/", Test_gene_name, '/'), showWarnings = FALSE)
reg_result = check_Test_gene_LR()
#### Plot
#reg_result = read.table(paste0(outdir, 'Association_tests_',Test_gene_name, '_LR.csv'),
# sep= ',', header = T, stringsAsFactors = F)
sig = reg_result[reg_result$FDR < 0.1, ]
plot_gene_sex(sig)
plot_gene_age(sig)