-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsynthesize_speech.py
284 lines (244 loc) · 14.6 KB
/
synthesize_speech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import argparse
import pickle
import json
import re
from subprocess import Popen, PIPE, DEVNULL, check_call
import logging
logging.basicConfig(level=logging.INFO,
format='[%(asctime)s][%(levelname)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
from tqdm import tqdm
import numpy as np
import torch
from subword_nmt.apply_bpe import BPE
from pydub import AudioSegment
from preprocessing_scripts import Bin
SEGMENT_DURATION_SEPARATOR = ' <||> '
FACTOR_DELIMITER = '|'
EOW = '<eow>'
PAUSE = '[pause]'
SHIFT= '<shift>'
SAMPLING_RATE = 22050
HOP_LENGTH = 256
def get_sorted_audio_files(data_dir):
"""
Get all the wav files in the directory named `*.Y.wav` and return them sorted numerically by `Y`
"""
files = [f for f in os.listdir(data_dir) if f.endswith('.wav')]
files = sorted(files, key=lambda f: int(f.split('.')[-2]))
return [os.path.join(args.data_dir, "subset" + args.subset, f) for f in files]
class SileroVad:
"""
Wrapper around Silero voice activity detection
"""
def __init__(self):
self.sampling_rate = 16000
self.model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
force_reload=False,
onnx=False)
(self.get_speech_timestamps, _, self.read_audio, _, _) = utils
def get_timestamps(self, wav_file):
"""
Get list of start and end timestamps of speech segments and lengths of pauses
"""
wav = self.read_audio(wav_file, sampling_rate=self.sampling_rate)
speech_timestamps = self.get_speech_timestamps(wav, self.model, sampling_rate=self.sampling_rate,
min_silence_duration_ms=300, visualize_probs=False,
threshold=0.3, return_seconds=True)
pauses = []
if len(speech_timestamps) > 1:
for i, pair in enumerate(speech_timestamps):
if i == 0:
previous_start, previous_end = pair["start"], pair["end"]
else:
current_start, current_end = pair["start"], pair["end"]
pause = current_start - previous_end
pauses.append(round(pause, 3))
previous_start, previous_end = pair["start"], pair["end"]
return speech_timestamps, pauses
class SockeyeTranslator:
"""
Wrapper around sockeye-translate command line to translate lines one at a time without reloading model
"""
def __init__(self, model_path):
if not os.path.exists(model_path):
raise FileNotFoundError(f"Specified Sockeye model checkpoint {model_path} does not exist")
sockeye_command = ['python', '-u', '-m', 'sockeye.translate',
'--models', os.path.dirname(model_path),
'--checkpoints', os.path.basename(model_path).split('.')[-1],
'-b', '5',
'--batch-size', '1',
'--output-type', 'translation_with_factors',
'--max-output-length', '768',
'--force-factors-stepwise', 'frames', 'total_remaining', 'segment_remaining', 'pauses_remaining',
'--json-input'
]
logging.info(f"Running Sockeye command: {' '.join(sockeye_command)}")
self.sockeye_process = Popen(sockeye_command, stdin=PIPE, stdout=PIPE, stderr=DEVNULL, env=os.environ,
text=True, encoding='utf-8', universal_newlines=True, bufsize=1)
def translate_line(self, line, segments):
"""
Send one line to sockeye-translate and get back the translation
"""
json_line = self.make_json_input(line, segments)
logging.debug(f"Sending input to sockeye-translate: {json_line}")
self.sockeye_process.stdin.write(json_line + '\n')
self.sockeye_process.stdin.flush()
return self.sockeye_process.stdout.readline()
def make_json_input(self, line, segment_durations):
"""
Create the JSON-formatted input for target factor prefixes etc.
"""
input_dict = {
'text': line,
'target_prefix': SHIFT,
'target_prefix_factors': ['0',
str(sum(segment_durations)),
str(segment_durations[0]),
str(len(segment_durations) - 1)
],
'target_segment_durations': segment_durations,
'use_target_prefix_all_chunks': 'false'
}
return json.dumps(input_dict, ensure_ascii=False).replace('"false"', 'false')
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--data-dir", type=str,
default=os.path.join(os.path.expanduser('~'), "iwslt-autodub-task", "data", "test"),
help="Directory containing the audio files. Inside this directory, the files should be in subsetX/*.Y.wav, "
"where sorting numerically by the Y field will give us the files in the same order as the transcript file. "
"This is already true for the test set subsets.")
parser.add_argument("--source-text", type=str,
help="File containing the source German text. Defaults to using subsetX.de for the test set subsets.")
parser.add_argument("--subset", choices=['1', '2'], type=str, required=True,
help="Which test set subset to generate dubs for.")
parser.add_argument("--sockeye-model", type=str,
default=os.path.join(os.path.expanduser('~'), "iwslt-autodub-task", "models", "sockeye", "trained_baselines", "baseline_factored_noised0.1", "model", "params.00078"),
help="Path to a Sockeye model checkpoint.")
parser.add_argument("--fastspeech-dir", type=str,
default=os.path.join(os.path.expanduser('~'), "iwslt-autodub-task", "third_party", "FastSpeech2"),
help="Path to the FastSpeech2 directory.")
parser.add_argument("--bpe-de", type=str,
default=os.path.join(os.path.expanduser('~'), "iwslt-autodub-task", "data", "training", "de_codes_10k"),
help="BPE codes for German source text.")
parser.add_argument("--durations-freq", type=str,
default=os.path.join(os.path.expanduser('~'), "iwslt-autodub-task", "durations_freq_all.pkl"),
help="Path to durations_freq_all.pkl")
parser.add_argument("--output-video-dir", type=str,
help="Directory to write final dubbed videos.")
parser.add_argument("--join-mode", type=str, choices=['match_pause', 'match_start'], default='match_start',
help="When joining segments together to create final clip:\n"
"match_pause: Pause lengths match source.\n"
"match_start: Try to match segment start times. May not match exactly if segments are too long.\n")
args = parser.parse_args()
# Default source text is `subsetX.de`
if args.source_text is None:
args.source_text = os.path.join(args.data_dir, "subset" + args.subset + '.de')
# Do not change: These directories are fixed for FastSpeech2 trained on LJSpeech data
output_dir = os.path.join(args.fastspeech_dir, 'output', 'result', 'LJSpeech')
durations_dir = os.path.join(args.fastspeech_dir, 'preprocessed_data', 'LJSpeech', 'duration')
# Default directory is a subdirectory of the input audio directory called `dubbed`
if args.output_video_dir is None:
args.output_video_dir = os.path.join(args.data_dir, "subset" + args.subset, 'dubbed')
os.makedirs(args.output_video_dir, exist_ok=True)
# Get audio files and lines of text - aligned with each other
audio_files = get_sorted_audio_files(os.path.join(args.data_dir, "subset" + args.subset))
with open(args.source_text) as f_src:
src_text = f_src.readlines()
assert len(audio_files) == len(src_text), "Number of audio files and number of lines in source text did not match."
# Create BPE processor
bpe_de = BPE(open(args.bpe_de))
# Load duration frequencies for binning
with open(args.durations_freq, 'rb') as f:
durations_freq = pickle.load(f)
bin_instance = Bin(durations_freq, n=100)
silero_vad = SileroVad()
sockeye_translator = SockeyeTranslator(args.sockeye_model)
speech_timestamps = []
pauses = []
hyp_segments = []
logging.info(f"Generating translated phoneme and duration outputs")
with open(os.path.join(output_dir, 'subset' + args.subset + '.en.output'), 'w') as f_out, \
open(os.path.join(output_dir, 'subset' + args.subset + '.en.fs2_inp'), 'w') as f_fs2_inp:
for idx, audio_file in tqdm(enumerate(audio_files)):
duration_frames = []
vad = silero_vad.get_timestamps(audio_file)
speech_timestamps.append(vad[0])
pauses.append(vad[1])
for timestamp in speech_timestamps[idx]:
duration_frames.append(int(np.round(timestamp["end"] * SAMPLING_RATE / HOP_LENGTH) - np.round(timestamp["start"] * SAMPLING_RATE / HOP_LENGTH)))
# BPE each segment and append segment durations bins
bins = bin_instance.find_bin(speech_durations=duration_frames)
sentence_segments = src_text[idx].split('[pause]')
sentence_bpe = [bpe_de.process_line(sentence_seg.strip()) for sentence_seg in sentence_segments]
sentence_bped_str = " ".join(sentence_bpe) + SEGMENT_DURATION_SEPARATOR + " ".join(bins)
# Get translation from Sockeye
hyp = sockeye_translator.translate_line(sentence_bped_str, duration_frames)
f_out.write(hyp)
# Remove `<eow>` and `<shift>` tokens
hyp = " ".join([t for t in hyp.split() if t.split(FACTOR_DELIMITER)[0] not in [EOW, SHIFT]])
# Split upon `[pause]`
hyp_segments.append(re.split(r"\s*" + re.escape(PAUSE) + r"\|[^\s]+\s*", hyp))
# Process each segment separately. Will later be joined with pauses again
for seg_idx, hyp_segment in enumerate(hyp_segments[idx]):
seg_fs2_id = f"subset{args.subset}-{idx+1}-{seg_idx+1}"
# Write input in FastSpeech2 format
f_fs2_inp.write(seg_fs2_id + '|LJSpeech|{')
f_fs2_inp.write(' '.join([t.split(FACTOR_DELIMITER)[0] for t in hyp_segment.split()]))
f_fs2_inp.write('}|\n')
# Save durations to file for FastSpeech2 to read
np.save(os.path.join(durations_dir, "LJSpeech-duration-" + seg_fs2_id + '.npy'),
np.array([int(t.split(FACTOR_DELIMITER)[1]) for t in hyp_segment.split()]))
# FastSpeech2 doesn't work unless you're in the right directory due to relative paths in their configs.
os.chdir(args.fastspeech_dir)
logging.info("Running FastSpeech2 on phoneme and duration outputs")
check_call(f"`dirname ${{CONDA_PREFIX}}`/fastspeech2/bin/python {os.path.join(args.fastspeech_dir, 'synthesize.py')} --mode batch "
f"--source {os.path.join(output_dir, 'subset' + args.subset + '.en.fs2_inp')} --restore_step 900000 "
f"-p {os.path.join(args.fastspeech_dir, 'config/LJSpeech/preprocess.yaml')} "
f"-m {os.path.join(args.fastspeech_dir, 'config/LJSpeech/model.yaml')} "
f"-t {os.path.join(args.fastspeech_dir, 'config/LJSpeech/train.yaml')} >/dev/null",
shell=True)
logging.info("Reconstructing final audio segments")
# Re-construct audio from the pieces and add pauses
for idx, audio_file in tqdm(enumerate(audio_files)):
# Counting pauses for re-insertion
num_pauses_hyp = len(hyp_segments[idx]) - 1
# Add silence in the beginning (if VAD detected speech after 0.0s in the beginning of the video)
if speech_timestamps[idx][0]['start'] > 0.0:
pauses_start = speech_timestamps[idx][0]['start']
else:
pauses_start = 0.0
audio = [AudioSegment.silent(duration=pauses_start * 1000)]
for seg_idx, hyp_segment in enumerate(hyp_segments[idx]):
# Join audio segments, adding pauses if needed
seg_fs2_id = f"subset{args.subset}-{idx+1}-{seg_idx+1}"
audio.append(AudioSegment.from_file(os.path.join(output_dir, seg_fs2_id + '.wav'), format="wav"))
if seg_idx < num_pauses_hyp and seg_idx < len(pauses[idx]):
pause_mseconds = pauses[idx][seg_idx] * 1000
if args.join_mode == 'match_start':
# Adjust the pause by the difference between original and generated audio (without going below zero)
orig_seg_mseconds = (speech_timestamps[idx][seg_idx]['end'] - speech_timestamps[idx][seg_idx]['start']) * 1000
pause_mseconds -= len(audio[-1]) - orig_seg_mseconds
pause_mseconds = max(0, pause_mseconds)
audio.append(AudioSegment.silent(duration=pause_mseconds))
# Concatenate all audio segments together
audio_final = sum(audio)
audio_path = os.path.join(args.output_video_dir, os.path.basename(audio_file).replace('.wav', '.en.wav'))
audio_final.export(audio_path, format="wav")
# Embed wav onto video
video_path = audio_path.replace('.wav', '.mp4')
if os.path.exists(audio_file.replace('.wav', '.mp4')):
check_call(f"ffmpeg -i {audio_file.replace('.wav', '.mp4')} -i {audio_path} -map 0:v:0 -map 1:a:0 -c:v copy {video_path} -hide_banner -loglevel error -y", shell=True)
elif os.path.exists(audio_file.replace('.wav', '.mov')):
check_call(f"ffmpeg -i {audio_file.replace('.wav', '.mov')} -i {audio_path} -map 0:v:0 -map 1:a:0 -c:v copy {video_path} -hide_banner -loglevel error -y", shell=True)
else:
logging.error(f"Could not find video at {audio_file.replace('.wav', '.{mp4,mov}')}")
logging.info("Cleaning up intermediate files")
# Remove intermediate files
check_call(f"rm -f {output_dir}/*.wav", shell=True)
check_call(f"rm -f {output_dir}/*.png", shell=True)
check_call(f"rm -f {args.output_video_dir}/*.wav", shell=True)
check_call(f"rm -f {durations_dir}/*", shell=True)
logging.info(f"Dub generation complete. Output videos can be found in {args.output_video_dir}")