-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathdensity_plot.py
71 lines (59 loc) · 2.43 KB
/
density_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#*
# @file Different utility functions
# Copyright (c) Zhewei Yao, Amir Gholami
# All rights reserved.
# This file is part of PyHessian library.
#
# PyHessian is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyHessian is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyHessian. If not, see <http://www.gnu.org/licenses/>.
#*
import math
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
def get_esd_plot(eigenvalues, weights):
density, grids = density_generate(eigenvalues, weights)
plt.semilogy(grids, density + 1.0e-7)
plt.ylabel('Density (Log Scale)', fontsize=14, labelpad=10)
plt.xlabel('Eigenvlaue', fontsize=14, labelpad=10)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.axis([np.min(eigenvalues) - 1, np.max(eigenvalues) + 1, None, None])
plt.tight_layout()
plt.savefig('example.pdf')
def density_generate(eigenvalues,
weights,
num_bins=10000,
sigma_squared=1e-5,
overhead=0.01):
eigenvalues = np.array(eigenvalues)
weights = np.array(weights)
lambda_max = np.mean(np.max(eigenvalues, axis=1), axis=0) + overhead
lambda_min = np.mean(np.min(eigenvalues, axis=1), axis=0) - overhead
grids = np.linspace(lambda_min, lambda_max, num=num_bins)
sigma = sigma_squared * max(1, (lambda_max - lambda_min))
num_runs = eigenvalues.shape[0]
density_output = np.zeros((num_runs, num_bins))
for i in range(num_runs):
for j in range(num_bins):
x = grids[j]
tmp_result = gaussian(eigenvalues[i, :], x, sigma)
density_output[i, j] = np.sum(tmp_result * weights[i, :])
density = np.mean(density_output, axis=0)
normalization = np.sum(density) * (grids[1] - grids[0])
density = density / normalization
return density, grids
def gaussian(x, x0, sigma_squared):
return np.exp(-(x0 - x)**2 /
(2.0 * sigma_squared)) / np.sqrt(2 * np.pi * sigma_squared)