-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_net.py
288 lines (243 loc) · 10.8 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#Adapted by Amit Rana from: https://github.com/facebookresearch/Mask2Former/blob/main/train_net.py
import csv
import numpy as np
try:
from shapely.errors import ShapelyDeprecationWarning
import warnings
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
pass
import copy
import itertools
import logging
from typing import Any, Dict, List, Set
import torch
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import build_detection_train_loader, build_detection_test_loader
from detectron2.engine import (
DefaultTrainer,
default_setup,
launch,
)
from dynamite.utils.misc import default_argument_parser
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger
from dynamite import (
COCOLVISDatasetMapper, EvaluationDatasetMapper
)
from dynamite import (
add_maskformer2_config,
add_hrnet_config
)
from dynamite.inference.utils.eval_utils import log_single_instance, log_multi_instance
class Trainer(DefaultTrainer):
"""
Extension of the Trainer class adapted to Mask2Former.
"""
@classmethod
def build_test_loader(cls,cfg,dataset_name):
mapper = EvaluationDatasetMapper(cfg,False,dataset_name)
return build_detection_test_loader(cfg, dataset_name, mapper=mapper)
@classmethod
def build_train_loader(cls, cfg):
datset_mapper_name = cfg.INPUT.DATASET_MAPPER_NAME
if datset_mapper_name == "coco_lvis":
mapper = COCOLVISDatasetMapper(cfg,True)
return build_detection_train_loader(cfg, mapper=mapper)
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
defaults = {}
defaults["lr"] = cfg.SOLVER.BASE_LR
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
if "backbone" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
print(module_param_name)
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
@classmethod
def test(cls, cfg, model, evaluators=None):
"""
Method is called after every evaluation Checkpoint iteration.
You can evaluate on any dataset and log the results/metrics
for debugging and performance measure puposes.
"""
cls.interactive_evaluation(cfg,model)
return {}
@classmethod
def interactive_evaluation(cls, cfg, model, args=None):
"""
Evaluate the given model. The given model is expected to already contain
weights to evaluate.
"""
if not args:
return
logger = logging.getLogger(__name__)
if args and args.eval_only:
eval_datasets = args.eval_datasets
vis_path = args.vis_path
eval_strategy = args.eval_strategy
seed_id = args.seed_id
iou_threshold = args.iou_threshold
max_interactions = args.max_interactions
# assert iou_threshold in [0.80, 0.85, 0.90, 0.95, 1.00]
assert iou_threshold>=0.80
for dataset_name in eval_datasets:
if dataset_name in ["GrabCut", "Berkeley", "davis_single_inst", "coco_Mval", 'sbd_single_inst']:
from dynamite.inference.single_instance.single_instance_inference import get_avg_noc
# from dynamite.inference.single_instance.sam_inference import get_avg_noc
data_loader = cls.build_test_loader(cfg, dataset_name)
results_i = get_avg_noc(model, data_loader, iou_threshold = iou_threshold,
sampling_strategy=1, max_interactions=max_interactions,
vis_path=vis_path
)
results_i = comm.gather(results_i, dst=0) # [res1:dict, res2:dict,...]
if comm.is_main_process():
# sum the values with same keys
assert len(results_i)>0
res_gathered = results_i[0]
results_i.pop(0)
for _d in results_i:
for k in _d.keys():
res_gathered[k] += _d[k]
log_single_instance(res_gathered, max_interactions=max_interactions,
dataset_name=dataset_name, iou_threshold=iou_threshold)
elif dataset_name in ["davis_2017_val","sbd_multi_insts","coco_2017_val"]:
if eval_strategy in ["random", "best", "worst"]:
from dynamite.inference.multi_instance.random_best_worst import evaluate
elif eval_strategy == "max_dt":
from dynamite.inference.multi_instance.max_dt import evaluate
elif eval_strategy == "wlb":
from dynamite.inference.multi_instance.wlb import evaluate
elif eval_strategy == "round_robin":
from dynamite.inference.multi_instance.round_robin import evaluate
data_loader = cls.build_test_loader(cfg, dataset_name)
results_i = evaluate(model, data_loader, iou_threshold = iou_threshold,
max_interactions = max_interactions,
eval_strategy = eval_strategy, seed_id=seed_id,
vis_path=vis_path)
results_i = comm.gather(results_i, dst=0) # [res1:dict, res2:dict,...]
if comm.is_main_process():
# sum the values with same keys
assert len(results_i) > 0
res_gathered = results_i[0]
results_i.pop(0)
for _d in results_i:
for k in _d.keys():
res_gathered[k] += _d[k]
log_multi_instance(res_gathered, max_interactions=max_interactions,
dataset_name=dataset_name, iou_threshold=iou_threshold)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
# for poly lr schedule
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
add_hrnet_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
# Setup logger for "mask_former" module
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="dynamite")
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
# res = Trainer.test(cfg, model)
res = Trainer.interactive_evaluation(cfg,model, args)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)