forked from Edderic/BRML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBayesLogRegression.m
46 lines (46 loc) · 1.77 KB
/
BayesLogRegression.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function [w,Smat,alpha,loglik]=BayesLogRegression(phi,c,w,alpha,R,opts)
%[w,Smat,alpha,loglik]=BayesLogRegression(phi,c,w,alpha,R,opts)
% Bayesian Logistic Regression
%
% Inputs:
% phi : M*N matrix of phi vectors on the N training points
% c : N*1 vector of associated class lables (0,1)
% w : initial weight vector
% alpha : initial regularisation parameter
% opts.HypUpdate : 1 for EM, 2 for Gull-MacKay
% opts.HypIterations : number of hyper parameter updates
% opts.NewtonIterations : number of Newton Updates
%
% Outputs:
% w : learned posterior mean weight vector
% Smat : posterior covariance
% alpha : learned regularisation parameter
% loglik : log likelihood of training data for optimal parameters
s=2*c(:)-1; [M N]=size(phi); logdetR = logdet(R); alphas=[];
for alphaloop=1:opts.HypIterations
for wloop=1:opts.NewtonIterations % Newton update for Laplace approximation
sigmawh = sigma(s.*(phi'*w));
gE=alpha.*R*w; J=zeros(M);
for n=1:N
gE = gE-(1-sigmawh(n))*phi(:,n).*s(n);
J = J + sigmawh(n)*(1-sigmawh(n))*phi(:,n)*phi(:,n)';
end
Hess= alpha*R+ J;
w = w-0.5*(Hess\gE);
end
Smat = inv(Hess);
L(alphaloop)=-0.5*alpha*w'*R*w+sum(logsigma(s.*(phi'*w)))-0.5*logdet(Hess)+M*0.5*log(alpha)+0.5*logdetR;
switch opts.HypUpdate
case 1
alpha = M./(w'*R*w+trace(R*Smat)); % EM update
case 2
alpha = min(10000,(M-alpha.*trace(R*Smat))./(w'*R*w)); % MacKay/Gull update
end
alphas=[alphas alpha];
if opts.plotprogess
subplot(1,3,1); plot(L); title('likelihood');
subplot(1,3,2); plot(log(alphas)); title('log alpha');
subplot(1,3,3); bar(w); title('mean weights');drawnow
end
end
loglik=L(end);