-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy path2-Taxi-analysis-with-RHadoop.Rpres
410 lines (278 loc) · 8.78 KB
/
2-Taxi-analysis-with-RHadoop.Rpres
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
Analysing New York taxis with RHadoop
========================================================
author: Andrie de Vries & Michele Usuelli
date: 2015-07-01, UseR!2015
width: 1680
height: 1050
css: css/custom.css
Motivation: New York taxi data
=============
An inconveniently sized data set (~200GB uncompressed CSV).
Contains information about every single taxi trip in New York over a 4-year period.
***
![](images/taxi-tweet.png)
Source: http://chriswhong.com/open-data/foil_nyc_taxi/
Introduction to the taxi data
====
type: section
```{r include=FALSE}
knitr::opts_chunk$set(cache = FALSE)
```
Introduction to the taxi data
====
The data is at http://publish.illinois.edu/dbwork/open-data/
Previous analysis published at
> Brian Donovan and Daniel B. Work. “Using coarse GPS data to quantify city-scale transportation system resilience to extreme events.” to appear, Transportation Research Board 94th Annual Meeting, August 2014. [preprint](https://www.dropbox.com/s/deruyszudfqrll0/TRB15DonovanWork.pdf), [source code](https://github.com/UIUC-Transportation-Data/gpsresilience).
Data dictionary
===============
Field | Description
----- | -----------
medallion | a permit to operate a yellow taxi cab in New York City, it is effectively a (randomly assigned) car ID. See also medallions.
hack_license | a license to drive the vehicle, it is effectively a (randomly assigned) driver ID. See also hack license.
vendor_id | e.g., Verifone Transportation Systems (VTS), or Mobile Knowledge Systems Inc (CMT), implemented as part of the Technology Passenger Enhancements Project.
rate_code | taximeter rate, see NYCT&L description.
store_and_fwd_flag | unknown attribute.
pickup_datetime | start time of the trip, mm-dd-yyyy hh24:mm:ss EDT.
dropoff_datetime | end time of the trip, mm-dd-yyyy hh24:mm:ss EDT.
passenger_count | number of passengers on the trip, default value is one.
trip_time_in_secs | trip time measured by the taximeter in seconds.
trip_distance | trip distance measured by the taximeter in miles.
pickup_longitude and pickup_latitude | GPS coordinates at the start of the trip.
dropoff_longitude and dropoff_latitude | GPS coordinates at the end of the trip.
Source: http://publish.illinois.edu/dbwork/open-data/
Introduction to mapreduce()
==========
type: section
Using a local context in rmr2
======
```{r taxi-2-rmr-local, cache=FALSE, include=FALSE}
read_chunk("taxi/taxi-2-rmr-local.R")
```
```{r load-packages}
```
Exercise 1
==========
type: cobalt
* Open the folder `exercises`
* Open the file `ex-1-lapply.R`
* Source the script
You are looking at a simple `mapreduce()` job that simulates `lapply()` in base R.
make.input.format()
======
The function `make.input.format()` allows you to specify the attributes of your input data.
The argument `format = "csv"` specifies a csv file. This is a wrapper around `read.table()`.
```{r make.input.format}
```
from.dfs()
======
Use from.dfs() to get a (small) file from dfs to local memory
```{r from.dfs-1}
```
from.dfs()
======
Use `keys()` and `values()` to extract the components
```{r from.dfs-2}
```
Why do the columns not have labels?
======
type: alert
Remember: hdfs splits the individual files across nodes
Implications:
* The chunk that's available to your mapper may not have a header file
* Thus, in general, csv files should not have a header at all!
The solution:
* Make a custom input format, specifying the column names
* (in the same way you specify `col.names` to `read.table()`)
Make an input format
======
The file, `data/dictionary_trip_data.csv` (in the linux file system) contains a data dictionary:
```{r make.input.format-with-colnames-1}
```
Use this information to configure the input format
Make an input format
======
Use the data dictionary information to configure the input format:
```{r make.input.format-with-colnames-2}
```
mapreduce() without any transformation
======
```{r mapreduce-1-a}
```
mapreduce() without any transformation
======
```{r mapreduce-1-b}
```
mapreduce() with a simpler mapper
======
```{r mapreduce-2}
```
mapreduce() with a simpler mapper
======
![](images/mapreduce-weekdays-0.png)
mapreduce() emitting a keyvalue pair
======
```{r mapreduce-3}
```
mapreduce() with a reducer
======
```{r mapreduce-4}
```
mapreduce() with a reducer
======
![](images/mapreduce-weekdays-1.png)
Can we write a more sensible mapper and reducer?
======
![](images/mapreduce-weekdays-2.png)
mapreduce() with a more sensible mapper
======
```{r mapreduce-5}
```
mapreduce() the final step
======
```{r mapreduce-6}
```
Exercise 2
==========
type: cobalt
* Open the folder `exercises`
* Open the file `ex-2-taxi-local.R`
* Source the script
This script contains a short `mapreduce()` script on the taxi data.
Run the code, section by section.
Ensure you understand what happens.
Try to compute the mean of number of passengers.
Hint:
* The mapper should compute sum and count of passengers
* The reduced should compute `mean <- sum / count`
Analysing by hour
=================
type: section
Doing the analysis by hour
==========================
```{r mapreduce-7-a}
```
Doing the analysis by hour
==========================
```{r mapreduce-7-b}
```
Plotting the results
====================
```{r mapreduce-7-plot-1, out.width="1500px", out.height="1000px"}
```
Plotting the results
====================
```{r mapreduce-7-plot-2, echo=FALSE, out.width="1500px", out.height="1000px"}
```
Putting files in hdfs with rhdfs
===============
type: section
rhdfs function overview
=======================
* Initialize
- `hdfs.init()`
- `hdfs.defaults()`
* File and directory manipulation
- `hdfs.ls()`
- `hdfs.delete()`
- `hdfs.mkdir()`
- `hdfs.exists()`
* Copy and move from local <-> HDFS
- `hdfs.put()`
- `hdfs.get()`
***
* Manipulate files within HDFS
- `hdfs.copy()`
- `hdfs.move()`
- `hdfs.rename()`
* Reading files directly from HDFS
- `hdfs.file()`
- `hdfs.read()`
- `hdfs.write()`
- `hdfs.flush()`
- `hdfs.seek()`
- `hdfs.tell(con)`
- `hdfs.close()`
- `hdfs.line.reader()`
- `hdfs.read.text.file()`
Putting the data from local file system to dfs
============
You use the `rhdfs` package to manipulate files in the hadoop dfs.
```{r put-taxi-in-dfs, cache=FALSE, include=FALSE}
read_chunk("utils/put-taxi-data-to-dfs.R")
```
```{r rhdfs, eval=FALSE}
```
Exercise 3
==========
type: cobalt
* Open the folder `exercises`
* Open the file `ex-3-put-taxi-data-to-dfs.R`
* Source the script
Use the `rhdfs` functions to satisfy yourself the files are in hadoop.
Hint: Use `hdfs.ls()`
Running the script in Hadoop compute context
=================
type: section
Running the script in Hadoop compute context
=================
Once you've tested your script in local context, it is generally very easy to deploy on all your data.
```{r, eval=FALSE}
rmr.options(backend = "hadoop")
```
What the hadoop output means
============
```
packageJobJar: [] [/usr/lib/hadoop-mapreduce/hadoop-streaming-2.4.0.2.1.5.0-695.jar] /tmp/streamjob4577673905010649130.jar tmpDir=null
15/06/23 14:18:01 INFO impl.TimelineClientImpl: Timeline service address: http://0.0.0.0:8188/ws/v1/timeline/
15/06/23 14:18:01 INFO client.RMProxy: Connecting to ResourceManager at ra-ldn-cluster-master-02.cloudapp.net/172.16.0.5:8050
15/06/23 14:18:02 INFO impl.TimelineClientImpl: Timeline service address: http://0.0.0.0:8188/ws/v1/timeline/
....
15/06/23 14:18:17 INFO mapreduce.Job: Job job_1434365936669_0041 running in uber mode : false
15/06/23 14:18:17 INFO mapreduce.Job: map 0% reduce 0%
15/06/23 14:18:31 INFO mapreduce.Job: map 1% reduce 0%
15/06/23 14:18:34 INFO mapreduce.Job: map 17% reduce 0%
15/06/23 14:18:40 INFO mapreduce.Job: map 19% reduce 0%
15/06/23 14:18:41 INFO mapreduce.Job: map 21% reduce 0%
15/06/23 14:18:47 INFO mapreduce.Job: map 37% reduce 0%
15/06/23 14:18:48 INFO mapreduce.Job: map 92% reduce 0%
15/06/23 14:18:49 INFO mapreduce.Job: map 92% reduce 19%
15/06/23 14:18:50 INFO mapreduce.Job: map 100% reduce 19%
15/06/23 14:18:52 INFO mapreduce.Job: map 100% reduce 100%
15/06/23 14:19:00 INFO mapreduce.Job: Job job_1434365936669_0041 completed successfully
...
rmr
reduce calls=24
15/06/23 14:19:01 INFO streaming.StreamJob: Output directory: /tmp/file55a346591243
```
Exercise 4
==========
type: cobalt
* Open the folder `exercises`
* Open the file `ex-4-taxi-hadoop.R`
* Source the script
Summary
=========
type: section
Summary
=========
In this session you:
* Used an Azure cluster running HortonWorks
* Developed scripts in local context with the `rmr2` package:
- Write mappers
- Wrote reducers
- Used `mapreduce()`
* Returned data to your local R session, for plotting
* Uploaded files into hdfs using `rhdfs`
* Ran the script directly in hadoop, using the hadoop context
Questions
=========
type: section
Questions
=========
?
?
?
End
===
type: section
Thank you.