Skip to content

Latest commit

 

History

History
29 lines (25 loc) · 1.42 KB

README.md

File metadata and controls

29 lines (25 loc) · 1.42 KB

taxi-demand-modeling

1. Reference

2. Input Format

  • Each booking is put in a file. Each line in the file is of the format:
    ...
    <date_i>,<time-of-a-day_i>,<latitude_i>,<longitude_i>,<lat-grid-id_i>,<lon-grid-id_i>
    ...
    e.g., 2014-05-06,503.0,1.321490,103.908600,7,34
  • File path: rootdir/grabTaxi/input/sg_bookings_jul_sep.txt_wday_b100.csv

3. Output Format

  • Loglikelihood: rootdir/grabTaxi/output/logLik(k1)_(k2)_wday_jul_sep_d(time-slot).csv
    where (k1), (k2) and (time-slot) are smallest num K, largest num K and time window of interest, which are specified during running the model
  • Parameters: rootdir/grabTaxi/output/GGMM/ggmm_(day)_jul_sep_k_w(t1)_w(t2) where (t1)/(t2) is the starting/ending time windows, which is specified during running the model.
    • mixture weights of K Gaussians of each cell
    • mu of K Gaussians of each cell
    • covariance matrix of K Gaussians of each cell
      e.g.,
      ...
      pi_0=[ 0.294605809129 0.634854771784 0.0705394190871 ]
      clusters = 3
      mu_0=[ 1.30096634019 103.828820661 360.28973179 ]
      sigma_0=[ [4.060461561835867e-05, 0.0, 0.0] [0.0, 0.0046409619060315144, 0.0] [0.0, 0.0, 438.4028687300076] ]
      ...