-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLstm.py
367 lines (290 loc) · 13.4 KB
/
Lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import numpy as np
import pickle
from preprocessor import preprocess
from LstmCell import LstmCell
import json
from joblib import Parallel, delayed
import time
import multiprocessing
import sys
p_file = open('params.json','r')
p = json.loads(p_file.read())
params = p["lstm"]
start = time.time()
title_len = 12
MODEL_FILE = 'modelLstmv1'
train_size = params['training_size']
gradCheck = True
np.random.seed(2)
def execParallel(self,X,y,index):
y_predicted, cells = self.forwardProp(X)
J = self.softmaxLoss(y_predicted, y)
grads = self.backprop(X,y,cells)
return index, J, grads
class Lstm:
def __init__(self):
self.weights = []
# order ['Whi','Whf','Who','Whg','Uii','Uif','Uio','Uig','V','bhi','bhf','bho','bhg','bii','bif','bio','big','b']
self.hidden_nodes = params["hidden_nodes"]
self.gate_params_shape = (params["hidden_nodes"],params["hidden_nodes"])
self.word_dim = p['preprocess']['vocab_size']
self.losses = []
self.losses_after_epochs = []
self.momentum1 = []
self.momentum2 = []
self.alpha = params['alpha']
self.beta1 = params['beta1']
self.beta2 = params['beta2']
self.offset = params['offset']
self.update_count = 0
self.batch_size = params["batch_size"]["val"]
self.randomizeParams()
def randomizeParams(self):
Whi = np.random.randn(self.gate_params_shape[0],self.gate_params_shape[1]) * np.sqrt(1.0/(1+self.hidden_nodes))
Whf = np.random.randn(self.gate_params_shape[0],self.gate_params_shape[1]) * np.sqrt(1.0/(1+self.hidden_nodes))
Who = np.random.randn(self.gate_params_shape[0],self.gate_params_shape[1]) * np.sqrt(1.0/(1+self.hidden_nodes))
Whg = np.random.randn(self.gate_params_shape[0],self.gate_params_shape[1]) * np.sqrt(1.0/(1+self.hidden_nodes))
Uii = np.random.randn(self.gate_params_shape[1],self.word_dim) * np.sqrt(1.0/(1+self.word_dim))
Uif = np.random.randn(self.gate_params_shape[1],self.word_dim) * np.sqrt(1.0/(1+self.word_dim))
Uio = np.random.randn(self.gate_params_shape[1],self.word_dim) * np.sqrt(1.0/(1+self.word_dim))
Uig = np.random.randn(self.gate_params_shape[1],self.word_dim) * np.sqrt(1.0/(1+self.word_dim))
bhi = np.random.randn(self.hidden_nodes) * np.sqrt(1.0/(1+self.hidden_nodes))
bhf = np.random.randn(self.hidden_nodes) * np.sqrt(1.0/(1+self.hidden_nodes))
bho = np.random.randn(self.hidden_nodes) * np.sqrt(1.0/(1+self.hidden_nodes))
bhg = np.random.randn(self.hidden_nodes) * np.sqrt(1.0/(1+self.hidden_nodes))
bii = np.random.randn(self.hidden_nodes) * np.sqrt(1.0/(1+self.word_dim))
bif = np.random.randn(self.hidden_nodes) * np.sqrt(1.0/(1+self.word_dim))
bio = np.random.randn(self.hidden_nodes) * np.sqrt(1.0/(1+self.word_dim))
big = np.random.randn(self.hidden_nodes) * np.sqrt(1.0/(1+self.word_dim))
V = np.random.randn(self.word_dim,self.gate_params_shape[1]) * np.sqrt(1.0/self.hidden_nodes+1)
b = np.random.randn(self.word_dim) * np.sqrt(1.0/(1+self.word_dim))
self.weights = [Whi,Whf,Who,Whg,Uii,Uif,Uio,Uig,V,bhi,bhf,bho,bhg,bii,bif,bio,big,b]
for i in range(len(self.weights)):
self.momentum1.append(np.zeros(self.weights[i].shape))
self.momentum2.append(np.zeros(self.weights[i].shape))
def get_weights(self):
names = ['Whi','Whf','Who','Whg','Uii','Uif','Uio','Uig','V','bhi','bhf','bho','bhg','bii','bif','bio','big','b']
w = {}
for i in range(len(self.weights)):
w[names[i]] = self.weights[i]
return w
def train(self):
obj = preprocess()
data = obj.load()
X = np.array(list(data.X_train[:])).astype(int)
y = np.array(list(data.y_train[:])).astype(int)
if train_size != -1:
X = np.array(list(data.X_train[:train_size]))
y = np.array(list(data.y_train[:train_size]))
print "Everything loaded starting training"
sys.stdout.flush()
if gradCheck:
self.gradientCheckTrue(X,y)
else:
self.miniBatchGd(X,y,data.word_to_index,data.index_to_word)
def forwardProp(self, X):
cells = []
m, T = X.shape
prev_hidden = np.zeros((m,self.hidden_nodes))
prev_cell = np.zeros((m,self.hidden_nodes))
w = self.get_weights()
predicted = np.zeros((m,T,self.word_dim))
for t in range(T):
cellt = LstmCell(m)
cellt.forward(X, prev_hidden, prev_cell, t, w)
predicted[:,t] = cellt.cache['output']
prev_hidden = cellt.cache['current_hidden']
prev_cell = cellt.cache['current_cell']
cells.append(cellt)
return predicted, cells
def backprop(self, X, y, cells):
m, T = X.shape
error_from_next_cell = np.zeros((m,self.hidden_nodes))
cell_t_from_next_cell = np.zeros((m,self.hidden_nodes))
weights = self.get_weights()
grads = []
for t in range(T-1,-1,-1):
cells[t].addErrorFromNextCell(error_from_next_cell, cell_t_from_next_cell)
cells[t].backprop(X, y, t, weights)
grads_current = cells[t].getdJdW(X, weights, t)
error_from_next_cell = cells[t].errors['prev_hidden']
cell_t_from_next_cell = cells[t].errors['prev_cell']
if t != T-1:
grads = self.unpackGrads(grads, grads_current)
else:
grads = grads_current
return grads
@staticmethod
def unpackGrads(grads, grads_current):
for i in range(len(grads)):
grads[i] += grads_current[i]
return grads
def softmaxLoss(self, y_predicted, y):
m = y.shape[0]
tmp = np.array(list(np.arange(y_predicted.shape[-2]))*m)
correct_words = y_predicted[np.arange(m).reshape(m,1), tmp.reshape(m,y_predicted.shape[-2]), y]
correct_words[correct_words <= 1e-10] += 1e-10 #to avoid nan
total_error = -1.0*np.log(correct_words)
J = np.sum(total_error)
return J
def trainParallel(self,X,y,flag, num_cores, pool_size):
#X here will be a mini batch this can be parallelized in the main function
J = 0
ite = [delayed(execParallel)(self,X[im:im+pool_size],y[im:im+pool_size], im) for im in range(0,len(X),pool_size)]
all_return_values = Parallel(n_jobs=num_cores)(ite)
all_return_values.sort(key=lambda j: j[0])
grads = []
for return_vals in all_return_values:
im = return_vals[0]
J += return_vals[1]
grads_curr = return_vals[2]
if(len(grads)==0):
grads = grads_curr
else:
for i in range(len(grads)):
grads[i] += grads_curr[i]
self.losses.append(J)
return grads
def updateParamsAdam(self,grads, n_iteration):
t = n_iteration
for i in range(len(grads)):
self.momentum1[i] = self.beta1*self.momentum1[i] + (1 - self.beta1) * grads[i]
for i in range(len(grads)):
self.momentum2[i] = self.beta2*self.momentum2[i] + (1 - self.beta2) * (grads[i]**2)
mu1 = [0 for i in range(len(grads))]
mu2 = [0 for i in range(len(grads))]
for i in range(len(grads)):
mu1[i] = 1.0 * self.momentum1[i]/(1 - self.beta1**t)
mu2[i] = 1.0 * self.momentum2[i]/(1 - self.beta2**t)
for i in range(len(self.weights)):
self.weights[i] -= self.alpha * (mu1[i]/np.sqrt(mu2[i]+self.offset))
def predict(self,X):
output, _ = self.forwardProp(X)
return output
def generateSent(self, word_to_index, count,index_to_word):
start_index = word_to_index['SENTENCE_START']
end_index = word_to_index['SENTENCE_END']
unknown = word_to_index['UNKNOWN_TOKEN']
all_sent = []
#generate 5 sentences
for i in range(count):
new_sent = [[start_index]]
while new_sent[0][-1] != end_index and len(new_sent[0])<=title_len:
s = np.array(new_sent)
next_word_probabs = self.predict(s)[-1][-1]
sampled_word = unknown
while sampled_word == unknown:
samples = np.random.multinomial(1,next_word_probabs) #sample some random word
sampled_word = np.argmax(samples)
new_sent[-1].append(sampled_word)
if new_sent[-1][-1] == end_index:
new_sent[-1].pop()
s = ' '.join([index_to_word[x] for x in new_sent[-1][1:]])
all_sent.append(s)
return all_sent
def miniBatchGd(self,X,y,word_to_index,index_to_word):
n_epochs = params['epochs']
zipped = zip(X,y)
num_cores = 0
pool_size = 0
J = -1
count = 0
m = X.shape[0]
parallel_flag = params["process_parallel"]
if parallel_flag == "True":
parallel_flag = True
else:
parallel_flag = False
if(parallel_flag):
num_cores = multiprocessing.cpu_count()
pool_size = self.batch_size/num_cores
for epochs in xrange(n_epochs):
if(epochs%3==0):
#forward propogate and get the loss
output, _ = self.forwardProp(X[:3000])
L = 1.0 * self.softmaxLoss(output, y[:3000])/3000
print "Epoch: "+str(epochs)+" over all Loss: "+str(L)+" time: "+str(time.time()-start)
sys.stdout.flush()
self.losses_after_epochs.append(L)
if(epochs%5==0):
print "-------------------------------------"
print "Sentences at Epoch: "+str(epochs)
try:
for num, x in enumerate(self.generateSent(word_to_index, 5,index_to_word)):
print str(num+1)+' --- '+x
except Exception as e:
print "some unicode charachter occured"
print "-------------------------------------"
sys.stdout.flush()
with open("controlTraining.txt",'r') as f:
control = f.read()
if control.strip() == "1":
print "stopping the training process .........."
sys.stdout.flush()
break
np.random.shuffle(zipped)
X,y = zip(*zipped)
X = np.array(X)
y = np.array(y)
for i in xrange(0,X.shape[0],self.batch_size):
#get the current mini batch
X_mini = X[i:i+self.batch_size]
y_mini = y[i:i+self.batch_size]
if parallel_flag:
count += 1
grads = self.trainParallel(X_mini, y_mini, parallel_flag, num_cores, pool_size)
self.updateParamsAdam(grads, count)
#decay the learning rate
self.alpha = 1.0*self.alpha/(1+epochs)
prev_hidden = np.zeros((X.shape[0],self.hidden_nodes))
output, _ = self.forwardProp(X[:3000])
L = self.softmaxLoss(output, y[:3000])
print "Epoch: "+str(epochs)+" over all Loss after training: "+str(L)+" time: "+str(time.time()-start)
sys.stdout.flush()
self.losses_after_epochs.append(L)
sys.stdout.flush()
def gradientCheckTrue(self,X,y):
epsi = 1e-7
X = X[:,:2]
y = y[:,:2]
y_predicted,cells = self.forwardProp(X)
grads = self.backprop(X,y,cells)
names = ['Whi','Whf','Who','Whg','Uii','Uif','Uio','Uig','V','bhi','bhf','bho','bhg','bii','bif','bio','big','b']
for i in range(len(self.weights)):
approx = np.zeros(self.weights[i].shape)
if len(self.weights[i].shape) > 1:
for r in range(self.weights[i].shape[0]):
for c in range(self.weights[i].shape[1]):
self.weights[i][r][c] += epsi
out, _ = self.forwardProp(X)
J1 = self.softmaxLoss(out, y)
self.weights[i][r][c] -= 2*epsi
out, _ = self.forwardProp(X)
J2 = self.softmaxLoss(out, y)
approx[r][c] = (1.0*(J1-J2))/(2*epsi)
self.weights[i][r][c] += epsi
nume = np.linalg.norm(approx-grads[i])
deno = np.linalg.norm(grads[i]) + np.linalg.norm(approx)
print "ratio of "+names[i]+" " + str(nume/deno)
else:
for j in range(len(self.weights[i])):
self.weights[i][j] += epsi
out, _ = self.forwardProp(X)
J1 = self.softmaxLoss(out, y)
self.weights[i][j] -= 2*epsi
out, _ = self.forwardProp(X)
J2 = self.softmaxLoss(out, y)
approx[j] = (1.0*(J1-J2))/(2*epsi)
self.weights[i][j] += epsi
# print approx
# print grads[i]
nume = np.linalg.norm(approx-grads[i])
deno = np.linalg.norm(grads[i]) + np.linalg.norm(approx)
print "ratio of "+names[i]+" " + str(nume/deno)
if __name__ == '__main__':
model = Lstm()
model.train()
pickle_file_sampled_data = open('pickledfiles/'+MODEL_FILE,'w')
pickle.dump(model, pickle_file_sampled_data)
pickle_file_sampled_data.close()
print("--- Training completed in seconds %s---" % (time.time() - start))