-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtf_ode_tpp.py
341 lines (262 loc) · 13.7 KB
/
tf_ode_tpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from easy_tpp.model.tf_model.tf_baselayer import DNN
from easy_tpp.model.tf_model.tf_basemodel import TfBaseModel
from easy_tpp.utils import rk4_step_method
from easy_tpp.utils.tf_utils import get_shape_list
if tf.__version__ >= '2.0':
tf = tf.compat.v1
tf.disable_v2_behavior()
def get_neural_ode_layer(
ode_fn,
num_samples=10,
solver=rk4_step_method,
return_states=False
):
"""Get a black-box neural ode layer parameterized by parameters.
Args:
ode_fn: function
It likes f(solver_function, dt, z_list), and contains the learnable variables.
num_samples: int
Number of samples in time interval dt.
solver: function
Solver function like f(ode_func, dt, z_0)
return_states: bool, default False
Identify whether return whole states or just last state.
Returns:
A neural_ode_layer (function) with signature f(z0, dt).
"""
@tf.custom_gradient
def neural_ode_layer(
z0,
dt,
):
"""Calculate z1 by z0 and time gap dt.
Args:
z0: Tensor with shape [..., dim]
dt: Tensor with shape [..., 1 or dim]
Returns:
A tensor presents z1, whose shape is the same as z0.
"""
with tf.name_scope('neural_ode'):
# Forward activity
dt_ratio = 1.0 / num_samples
delta_t = dt * dt_ratio
z = z0
z_list = []
for i in range(num_samples):
z = solver(ode_fn, delta_t, z)
z_list.append(z)
z1 = z
def grad(a1, variables=None):
# a1 is grad_z1 == dL/dz1
if variables is None:
variables = []
def aug_dynamics(tmp_states):
"""
Ode function for states [z_1, a_1, \thetas (many)].
Args:
tmp_states: list
Elements are [z_1, a_1, \thetas (many)].
Returns:
List contains differentiations of states.
"""
tmp_z = tmp_states[0]
tmp_neg_a = -tmp_states[1]
# tmp_var_grad = tmp_states[2:]
# calculate dz/dt
# if tf.__version__ < '2.0':
# # using GradientType to calculate (faster when building graph)
# with tf.GradientTape() as g:
# g.watch([tmp_z, *variables])
# func_eval = ode_fn(tmp_z)
# tmp_ds = g.gradient(func_eval, [tmp_z, *variables], output_gradients=tmp_neg_a)
# else:
# using tf.gradients to calculate
func_eval = ode_fn(tmp_z)
tmp_ds = tf.gradients(func_eval, [tmp_z, *variables], grad_ys=tmp_neg_a)
neg_adfdz = tmp_ds[0]
neg_adfdtheta = [tf.reshape(var, [-1]) for var in tmp_ds[1:]]
return [func_eval, neg_adfdz, *neg_adfdtheta]
# Backward activity
if tf.__version__ < '2.0':
# Compile EAGER graph to static (this will be much faster)
import tensorflow.contrib.eager as tfe
aug_dynamics = tfe.defun(aug_dynamics)
# Construct back-state for ode solver
# reshape variable \theta for batch solving
init_var_grad = [tf.zeros([np.prod(get_shape_list(var))]) for var in variables]
if a1 is None:
a1 = tf.zeros_like(z1)
# [z(t_1), a(t_1), \theta]
states = [z1, a1, *init_var_grad]
# print('states:', states)
for i in range(num_samples):
states = solver(aug_dynamics, -delta_t, states)
grad_z0 = states[1]
grad_t = tf.ones_like(dt)
if variables is not None:
# average the different dt effect on variable \theta
grad_theta = [tf.reshape(tf.reduce_mean(var_grad, axis=0), var.shape) for var, var_grad in
zip(variables, states[2:])]
return (grad_z0, grad_t), grad_theta
else:
return grad_z0, grad_t
if return_states:
return z_list, grad
else:
return z1, grad
return neural_ode_layer
class ODETPP(TfBaseModel):
"""
TODO: this version runs ok under tf 1.13, but is very slow under tf 2.0
"""
def __init__(self, model_config):
super(ODETPP, self).__init__(model_config)
self.ode_num_sample_per_step = model_config.model_specs['ode_num_sample_per_step']
self.time_factor = model_config.model_specs['time_factor']
self.seq_len = model_config.max_len
def build_graph(self):
"""Build up the network
"""
with tf.variable_scope('ODETPP'):
# have to specify the max len of the input to avoid a variable length of tensor.
# for looping over the variable length of tensor, custom gradient can not properly work
# in the scan (while_loop)
# tf.GradientTape.gradients() does not support graph control flow operations
# like tf.cond or tf.while at this time
# Input placeholder
# shape - (batch_size, max_len)
# max_len - sequence length including time zero padding
self.time_delta_seqs = tf.placeholder(tf.float32, shape=[None, self.seq_len])
# shape - (batch_size, max_len)
self.time_seqs = tf.placeholder(tf.float32, shape=[None, self.seq_len])
# shape - (batch_size, max_len)
self.type_seqs = tf.placeholder(tf.int32, shape=[None, self.seq_len])
# shape - (batch_size, max_len)
self.batch_non_pad_mask = tf.placeholder(tf.int32, shape=[None, self.seq_len])
# shape - (batch_size, max_len, max_len)
self.attention_mask = tf.placeholder(tf.int32, shape=[None, None, None])
# Event type one-hot code
# shape - (batch_size, max_len, num_event_types)
self.type_mask = tf.placeholder(tf.float32, shape=[None, None, None])
self.layer_intensity = layers.Dense(self.num_event_types, activation=tf.nn.softplus)
self.event_model = DNN(hidden_size=self.hidden_size)
self.solver = rk4_step_method
self.layer_neural_ode = get_neural_ode_layer(ode_fn=self.event_model,
solver=self.solver,
num_samples=self.ode_num_sample_per_step)
self.loss, self.num_event = self.loglike_loss()
self.is_training = tf.placeholder(tf.bool)
# Make predictions
if self.event_sampler and self.gen_config.num_step_gen == 1:
self.dtime_predict_one_step, self.type_predict_one_step = \
self.predict_one_step_at_every_event(self.time_seqs,
self.time_delta_seqs,
self.type_seqs)
if self.event_sampler and self.gen_config.num_step_gen > 1:
# make generations
self.dtime_generation, self.type_generation = \
self.predict_multi_step_since_last_event(self.time_seqs,
self.time_delta_seqs,
self.type_seqs,
num_step=self.gen_config.num_step_gen)
def forward(self, time_delta_seqs, type_seqs, **kwargs):
"""Call the model.
Args:
time_delta_seqs (tensor): [batch_size, seq_len], inter-event time seqs.
type_seqs (tensor): [batch_size, seq_len], event type seqs.
Returns:
tensor: hidden states at event times.
"""
# [batch_size, seq_len=max_len, hidden_size]
type_seq_emb = self.layer_type_emb(type_seqs)
# [batch_size, seq_len=max_len, 1]
time_delta_seqs_ = time_delta_seqs[..., None]
total_state_at_event_minus = []
total_state_at_event_plus = []
last_state = tf.zeros_like(type_seq_emb[:, 0, :])
for type_emb, dt in zip(tf.unstack(type_seq_emb, axis=-2),
tf.unstack(time_delta_seqs_, axis=-2)):
# the bp may break for tf 1.13 when dt is large
# after testing, we put a time factor here to avoid the failure of bp
# it is not needed for tf 2.0.
dt = dt / self.time_factor
last_state = self.layer_neural_ode(last_state + type_emb, dt)
total_state_at_event_minus.append(last_state)
total_state_at_event_plus.append(last_state + type_emb)
# [batch_size, seq_len, hidden_size]
state_ti = tf.stack(total_state_at_event_minus, axis=1)
# [batch_size, seq_len, hidden_size]
state_to_evolve = tf.stack(total_state_at_event_plus, axis=1)
return state_ti, state_to_evolve
def loglike_loss(self):
"""Compute the loglike loss.
Args:
batch (list): batch input.
Returns:
list: loglike loss, num events.
"""
state_ti, state_ti_plus = self.forward(self.time_delta_seqs[:, 1:], self.type_seqs[:, :-1])
# Lambda(t) right before each event time point
# lambda_at_event - [batch_size, num_times=max_len-1, num_event_types]
# Here we drop the last event because it has no delta_time label (can not decay)
lambda_at_event = self.layer_intensity(state_ti)
# interval_t_sample - [batch_size, num_times=max_len-1, num_mc_sample]
# for every batch and every event point => do a sampling (num_mc_sampling)
# the first dtime is zero, so we use time_delta_seq[:, 1:]
interval_t_sample = self.make_dtime_loss_samples(self.time_delta_seqs[:, 1:])
# [batch_size, num_times = max_len - 1, num_mc_sample, hidden_size]
sample_state_ti = self.compute_states_at_sample_times(state_ti_plus, interval_t_sample)
# [batch_size, num_times = max_len - 1, num_mc_sample, event_num]
lambda_t_sample = self.layer_intensity(sample_state_ti)
event_ll, non_event_ll, num_events = self.compute_loglikelihood(lambda_at_event=lambda_at_event,
lambdas_loss_samples=lambda_t_sample,
time_delta_seq=self.time_delta_seqs[:, 1:],
seq_mask=self.batch_non_pad_mask[:, 1:],
lambda_type_mask=self.type_mask[:, 1:])
loss = - tf.reduce_sum(event_ll - non_event_ll)
return loss, num_events
def compute_states_at_sample_times(self, state_ti_plus, sample_dtimes):
"""Compute the states at sampling times.
Args:
state_ti_plus (tensor): [batch_size, seq_len, hidden_size], states right after the events.
sample_dtimes (tensor): [batch_size, seq_len, num_samples], delta times in sampling.
Returns:
tensor: hiddens states at sampling times.
"""
# Use broadcasting to compute the decays at all time steps
# at all sample points
# h_ts shape (batch_size, seq_len, num_samples, hidden_dim)
state = self.solver(diff_func=self.event_model,
dt=sample_dtimes[..., None], # [batch_size, seq_len, num_samples, 1]
z0=state_ti_plus[..., None, :]) # [batch_size, seq_len, 1, hidden_size]
return state
def compute_intensities_at_sample_times(self, time_seqs, time_delta_seqs, type_seqs, sample_dtimes, **kwargs):
"""Compute the intensity at sampled times, not only event times.
Args:
time_seqs (tensor): [batch_size, seq_len], times seqs.
time_delta_seqs (tensor): [batch_size, seq_len], time delta seqs.
type_seqs (tensor): [batch_size, seq_len], event type seqs.
sample_dtimes (tensor): [batch_size, seq_len, num_sample], sampled inter-event timestamps.
Returns:
tensor: [batch_size, num_times, num_mc_sample, num_event_types],
intensity at each timestamp for each event type.
"""
compute_last_step_only = kwargs.get('compute_last_step_only', False)
state_ti, state_ti_plus = self.forward(time_delta_seqs, type_seqs, **kwargs)
# Num of samples in each batch and num of event time point in the sequence
batch_size, seq_len, _ = get_shape_list(state_ti)
if compute_last_step_only:
interval_t_sample = sample_dtimes[:, -1:, :]
else:
# interval_t_sample - [batch_size, num_times, num_mc_sample, 1]
interval_t_sample = sample_dtimes
# Use broadcasting to compute the decays at all time steps
# at all sample points
# [batch_size, num_sample_times / 1, num_mc_sample, hidden_size]
sample_state_ti = self.compute_states_at_sample_times(state_ti_plus, interval_t_sample)
# [batch_size, num_sample_times / 1, num_mc_sample, num_event_types]
sampled_intensities = self.layer_intensity(sample_state_ti)
return sampled_intensities