-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsong_dataloader.py
198 lines (142 loc) · 6.13 KB
/
song_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
from torch.utils.data import DataLoader,random_split
import json
REST_TOKEN = "rest"
SOS_TOKEN = "<SOS>"
EOS_TOKEN = "<EOS>"
class Song_Dataloader:
"""
Steps in preprocessing pipleline:
- transpose non tranposed songs so we have complete dataset of 4/4 C major songs
- generate vocab
- break into 8 measure chunks with two measure overlap
-divide into notes vs chords (inputs vs outputs)
-one hot as 16th note frames, batch, pad etc
"""
def read_songs(self):
cm_path = "Datasets/CHORD_MELODY_DATASET.json"
jazz_path = "Datasets/JAZZ_LS_DATASET.json"
pdsa_path = "Datasets/PDSA_DATASET.json"
wiki_path = "Datasets/WIKIFONIA_DATASET.json"
with open(cm_path, 'r') as json_file:
combined_chord_melody_data = json.load(json_file)
with open(jazz_path, 'r') as json_file:
combined_jazz_data = json.load(json_file)
with open(pdsa_path, 'r') as json_file:
combined_pdsa_data = json.load(json_file)
with open(wiki_path, 'r') as json_file:
combined_wikifonia_data = json.load(json_file)
# generate vocabulary
REST_TOKEN = "rest"
SOS_TOKEN = "<SOS>"
EOS_TOKEN = "<EOS>"
in2note = {}
note2in = {}
in2chord = {}
chord2in = {}
for i in range(12):
in2note[i] = i
note2in[i] = i
note2in["<EOS>"] = len(note2in)
in2note[len(in2note)] = "<EOS>"
note2in["rest"] = len(note2in)
in2note[len(in2note)] = "rest"
for input,output in combined_wikifonia_data:
for chord in output:
if chord not in chord2in:
chord2in[chord] = len(chord2in)
in2chord[len(in2chord)] = chord
#print("vocab size after wikifonia is: ", len(chord2in))
for input,output in combined_jazz_data:
for chord in output:
if chord not in chord2in:
chord2in[chord] = len(chord2in)
in2chord[len(in2chord)] = chord
#print("vocab size after wikifonia+jazz is: ", len(chord2in))
for input,output in combined_pdsa_data:
for chord in output:
if chord not in chord2in:
chord2in[chord] = len(chord2in)
in2chord[len(in2chord)] = chord
#print("vocab size after wikifonia+jazz+pdsa is: ", len(chord2in))
for input,output in combined_chord_melody_data:
for chord in output:
if chord not in chord2in:
chord2in[chord] = len(chord2in)
in2chord[len(in2chord)] = chord
# print ouptut vocab size if uncommented:
#print("vocab size after wikifonia+jazz+pdsa+chord_melody is: ", len(chord2in))
# Checking vocab for debug purposes
# print(chord2in)
# print(len(chord2in))
# print(note2in)
# print(in2note)
self.in2chord = in2chord
self.chord2in = chord2in
self.note2in = note2in
self.in2note = in2note
# Checking length of datasets for debug purposes
# print(combined_wikifonia_data[:3])
# for i,o in combined_wikifonia_data[:3]:
# print(len(i))
# print(len(o))
# print("----")
# for i,o in combined_jazz_data[:3]:
# print(len(i))
# print(len(o))
# print("----")
# for i,o in combined_pdsa_data[:3]:
# print(len(i))
# print(len(o))
# print("----")
# for i,o in combined_chord_melody_data[:3]:
# print(len(i))
# print(len(o))
# combine datasets
combined_data = combined_jazz_data+combined_wikifonia_data+combined_pdsa_data+combined_chord_melody_data
# print("Total 8 measure chunks of data read:", len(combined_data))
return combined_data, chord2in,in2chord,note2in, in2note
def create_dataloaders(self,combined_data, training_split,batch_size):
def custom_collate_fn(batch):
input_data, output_data = zip(*batch)
input_data = torch.tensor(input_data)
output_data = torch.tensor(output_data)
return input_data, output_data
# Split into training/test set and feed into dataloader
split_indice = int(len(combined_data)*training_split)
training_data = combined_data[:split_indice]
test_data = combined_data[split_indice:]
train_dataloader = DataLoader(training_data, batch_size=batch_size,collate_fn=custom_collate_fn)
test_dataloader = DataLoader(test_data, batch_size=batch_size,collate_fn=custom_collate_fn)
return train_dataloader, test_dataloader
def load(self, training_split=0.8,batch_size=128):
# load json data and create vocab
combined_data, chord2in,in2chord,note2in, in2note = self.read_songs()
# encode data
for input,output in combined_data:
for i,note in enumerate(input):
input[i] = note2in[note]
for i,chord in enumerate(output):
output[i] = chord2in[chord]
# create training/test split
train_dataloader, validation_dataloader = self.create_dataloaders(combined_data, training_split,batch_size)
return train_dataloader,validation_dataloader,chord2in,in2chord,note2in, in2note
def get_vocab(self):
return self.in2chord, self.chord2in, self.note2in, self.in2note
def encode_melody(self,melody):
"""
Transform melody into format model expects at inference time(16th note frames)
"""
encoded = []
for noteDur in melody:
if noteDur[0] != "rest":
noteName = (noteDur[0]%12)
else:
noteName = "rest"
encoded_note = self.note2in[noteName]
encoded_note = [encoded_note]*noteDur[1] # repeat the note its duration number of times (in 16th notes)
encoded += encoded_note
encoded.append(self.note2in[EOS_TOKEN])
return encoded
def get_special_chars(self):
return SOS_TOKEN,EOS_TOKEN