forked from FraPochetti/ImageTextRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
71 lines (65 loc) · 3.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from userimageski import UserData
if __name__ == '__main__':
##### the following code includes all the steps to get from a raw image to a prediction.
##### the working code is the uncommented one.
##### the two pickle models which are passed as argument to the select_text_among_candidates
##### and classify_text methods are obviously the result of a previously implemented pipeline.
##### just for the purpose of clearness below the code is provided.
##### I want to emphasize that the commented code is the one necessary to get the models trained.
# creates instance of class and loads image
user = UserData('lao.jpg')
# plots preprocessed imae
user.plot_preprocessed_image()
# detects objects in preprocessed image
candidates = user.get_text_candidates()
# plots objects detected
user.plot_to_check(candidates, 'Total Objects Detected')
# selects objects containing text
maybe_text = user.select_text_among_candidates('/media/francesco/Francesco/CharacterProject/linearsvc-hog-fulltrain2-90.pickle')
# plots objects after text detection
user.plot_to_check(maybe_text, 'Objects Containing Text Detected')
# classifies single characters
classified = user.classify_text('/media/francesco/Francesco/CharacterProject/linearsvc-hog-fulltrain36-90.pickle')
# plots letters after classification
user.plot_to_check(classified, 'Single Character Recognition')
# plots the realigned text
user.realign_text()
##########################################################################################################################
## MACHINE LEARNING SECTION
##########################################################################################################################
#from data import OcrData
#from cifar import Cifar
#
####################################################################
## 1- GENERATE MODEL TO PREDICT WHETHER AN OBJECT CONTAINS TEXT OR NOT
####################################################################
#
# CREATES AN INSTANCE OF THE CLASS LOADING THE OCR DATA
#data = OcrData('/home/francesco/Dropbox/DSR/OCR/ocr-config.py')
#
# GENERATES A UNIQUE DATA SET MERGING NON-TEXT WITH TEXT IMAGES
#data.merge_with_cifar()
#
# PERFORMS GRID SEARCH CROSS VALIDATION GETTING BEST MODEL OUT OF PASSED PARAMETERS
#data.perform_grid_search_cv('linearsvc-hog')
#
# TAKES THE PARAMETERS LINKED TO BEST MODEL AND RE-TRAINS THE MODEL ON THE WHOLE TRAIN SET
#data.generate_best_hog_model()
#
# TAKES THE JUST GENERATED MODEL AND EVALUATES IT ON TRAIN SET
#data.evaluate('/media/francesco/Francesco/CharacterProject/linearsvc-hog-fulltrain2-90.pickle')
####################################################################
## 2- GENERATE MODEL TO CLASSIFY SINGLE CHARACTERS
####################################################################
#
# CREATES AN INSTANCE OF THE CLASS LOADING THE OCR DATA
#data = OcrData('/home/francesco/Dropbox/DSR/OCR/ocr-config.py')
#
# PERFORMS GRID SEARCH CROSS VALIDATION GETTING BEST MODEL OUT OF PASSED PARAMETERS
#data.perform_grid_search_cv('linearsvc-hog')
#
# TAKES THE PARAMETERS LINKED TO BEST MODEL AND RE-TRAINS THE MODEL ON THE WHOLE TRAIN SET
#data.generate_best_hog_model()
#
# TAKES THE JUST GENERATED MODEL AND EVALUATES IT ON TRAIN SET
#data.evaluate('/media/francesco/Francesco/CharacterProject/linearsvc-hog-fulltrain36-90.pickle')