-
Notifications
You must be signed in to change notification settings - Fork 235
/
Copy pathmain_loss_landscape.py
166 lines (134 loc) · 5.18 KB
/
main_loss_landscape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2023 Apple Inc. All Rights Reserved.
#
from typing import List, Optional
import torch
from cvnets import get_model
from data import create_test_loader
from engine import Trainer
from loss_fn import build_loss_fn
from options.opts import get_loss_landscape_args
from utils import logger, resources
from utils.common_utils import create_directories, device_setup
from utils.ddp_utils import distributed_init, is_master
def main(opts, **kwargs):
# defaults are for CPU
dev_id = getattr(opts, "dev.device_id", torch.device("cpu"))
device = getattr(opts, "dev.device", torch.device("cpu"))
use_distributed = getattr(opts, "ddp.use_distributed")
is_master_node = is_master(opts)
# set-up data loaders
val_loader = create_test_loader(opts)
# set-up the model and print information
model = get_model(opts)
if is_master_node:
model.info()
# memory format
memory_format = (
torch.channels_last
if getattr(opts, "common.channels_last", False)
else torch.contiguous_format
)
model = model.to(device=device, memory_format=memory_format)
if use_distributed:
model = model.to(device=device, memory_format=memory_format)
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[dev_id],
output_device=dev_id,
find_unused_parameters=getattr(opts, "ddp.find_unused_params", False),
)
if is_master_node:
logger.log("Using DistributedDataParallel for training")
# setup criteria and print its information
criteria = build_loss_fn(opts)
if is_master_node:
logger.log(logger.color_text("Loss function"))
print(criteria)
criteria = criteria.to(device=device)
training_engine = Trainer(
opts=opts,
model=model,
validation_loader=val_loader,
training_loader=None,
optimizer=None,
criterion=criteria,
scheduler=None,
start_epoch=0,
start_iteration=0,
best_metric=0,
model_ema=None,
gradient_scaler=None,
)
training_engine.run_loss_landscape()
def distributed_worker(i, main, opts, kwargs):
setattr(opts, "dev.device_id", i)
torch.cuda.set_device(i)
setattr(opts, "dev.device", torch.device(f"cuda:{i}"))
ddp_rank = getattr(opts, "ddp.rank", None)
if ddp_rank is None: # torch.multiprocessing.spawn
ddp_rank = kwargs.get("start_rank", 0) + i
setattr(opts, "ddp.rank", ddp_rank)
node_rank = distributed_init(opts)
setattr(opts, "ddp.rank", node_rank)
main(opts, **kwargs)
def main_worker_loss_landscape(args: Optional[List[str]] = None, **kwargs):
opts = get_loss_landscape_args(args=args)
print(opts)
# device set-up
opts = device_setup(opts)
node_rank = getattr(opts, "ddp.rank")
if node_rank < 0:
logger.error("--rank should be >=0. Got {}".format(node_rank))
is_master_node = is_master(opts)
# create the directory for saving results
save_dir = getattr(opts, "common.results_loc")
run_label = getattr(opts, "common.run_label")
exp_dir = "{}/{}".format(save_dir, run_label)
setattr(opts, "common.exp_loc", exp_dir)
create_directories(dir_path=exp_dir, is_master_node=is_master_node)
num_gpus = getattr(opts, "dev.num_gpus")
world_size = getattr(opts, "ddp.world_size")
# use DDP if num_gpus is > 1
use_distributed = True if num_gpus > 1 else False
setattr(opts, "ddp.use_distributed", use_distributed)
if num_gpus > 0:
assert torch.cuda.is_available(), "We need CUDA for training on GPUs."
# No of data workers = no of CPUs (if not specified or -1)
n_cpus = resources.cpu_count()
dataset_workers = getattr(opts, "dataset.workers")
if use_distributed:
# get device id
dev_id = getattr(opts, "ddp.device_id", None)
setattr(opts, "dev.device_id", dev_id)
if world_size == -1:
logger.log(
"Setting --ddp.world-size the same as the number of available gpus"
)
world_size = num_gpus
setattr(opts, "ddp.world_size", world_size)
if dataset_workers == -1 or dataset_workers is None:
setattr(opts, "dataset.workers", n_cpus // num_gpus)
start_rank = getattr(opts, "ddp.rank", 0)
setattr(opts, "ddp.rank", None)
kwargs["start_rank"] = start_rank
setattr(opts, "ddp.start_rank", start_rank)
torch.multiprocessing.spawn(
fn=distributed_worker,
args=(main, opts, kwargs),
nprocs=num_gpus,
)
else:
if dataset_workers == -1:
setattr(opts, "dataset.workers", n_cpus)
# adjust the batch size
train_bsize = getattr(opts, "dataset.train_batch_size0") * max(1, num_gpus)
val_bsize = getattr(opts, "dataset.val_batch_size0") * max(1, num_gpus)
setattr(opts, "dataset.train_batch_size0", train_bsize)
setattr(opts, "dataset.val_batch_size0", val_bsize)
setattr(opts, "dev.device_id", None)
main(opts=opts, **kwargs)
if __name__ == "__main__":
#
main_worker_loss_landscape()