-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain.py
182 lines (152 loc) · 6.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright © 2023-2024 Apple Inc.
import argparse
import logging
import os
from functools import partial
from uuid import uuid4
import numpy as np
import torch
from dataset.argument_parsing import add_dataset_arguments, get_datasets
from model.argument_parsing import add_model_arguments, get_model_pytorch
from utils.argument_parsing import (
add_algorithm_arguments,
add_dnn_training_arguments,
add_filepath_arguments,
add_mechanism_arguments,
add_seed_arguments,
get_algorithm,
maybe_inject_arguments_from_config,
parse_mechanism,
)
from utils.callback.pytorch import get_polynomial_decay_schedule_with_warmup
from utils.logging import init_logging
from pfl.aggregate.simulate import SimulatedBackend
from pfl.callback import (
AggregateMetricsToDisk,
CentralEvaluationCallback,
ModelCheckpointingCallback,
StopwatchCallback,
TrackBestOverallMetrics,
WandbCallback,
)
from pfl.hyperparam import NNEvalHyperParams, NNTrainHyperParams
from pfl.internal.ops.pytorch_ops import get_default_device, to_tensor
from pfl.model.pytorch import PyTorchModel
from .argument_parsing import add_flair_training_arguments
def main():
init_logging(logging.DEBUG)
maybe_inject_arguments_from_config()
logger = logging.getLogger(name=__name__)
argument_parser = argparse.ArgumentParser(
description=
'Train a model using private federated learning in simulation.')
argument_parser = add_dataset_arguments(argument_parser)
argument_parser = add_model_arguments(argument_parser)
argument_parser = add_filepath_arguments(argument_parser)
argument_parser = add_seed_arguments(argument_parser)
argument_parser = add_algorithm_arguments(argument_parser)
argument_parser = add_flair_training_arguments(argument_parser)
argument_parser = add_dnn_training_arguments(argument_parser)
argument_parser = add_mechanism_arguments(argument_parser)
arguments = argument_parser.parse_args()
np.random.seed(arguments.seed)
torch.manual_seed(arguments.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(arguments.seed)
local_privacy = parse_mechanism(
mechanism_name=arguments.local_privacy_mechanism,
clipping_bound=arguments.local_privacy_clipping_bound,
epsilon=arguments.local_epsilon,
delta=arguments.local_delta,
order=arguments.local_order)
central_privacy = parse_mechanism(
mechanism_name=arguments.central_privacy_mechanism,
clipping_bound=arguments.central_privacy_clipping_bound,
epsilon=arguments.central_epsilon,
delta=arguments.central_delta,
order=arguments.central_order,
cohort_size=arguments.cohort_size,
noise_cohort_size=arguments.noise_cohort_size,
num_epochs=arguments.central_num_iterations,
population=arguments.population,
min_separation=arguments.min_separation,
is_central=True)
# to_tensor is float32 by default,
# training faster if input images remain in uint8.
arguments.numpy_to_tensor = partial(to_tensor, dtype=None)
(training_federated_dataset, val_federated_dataset, central_data,
metadata) = get_datasets(arguments)
num_classes = len(metadata["label_mapping"])
arguments.channel_mean = metadata["channel_mean"]
arguments.channel_stddevs = metadata["channel_stddevs"]
arguments.num_classes = num_classes
pytorch_model = get_model_pytorch(arguments)
# Put on GPU if available.
pytorch_model = pytorch_model.to(get_default_device())
variables = [p for p in pytorch_model.parameters() if p.requires_grad]
if arguments.central_optimizer == 'adam':
central_optimizer = torch.optim.AdamW(
variables,
arguments.learning_rate,
eps=0.01,
betas=(0.9, 0.99),
weight_decay=arguments.weight_decay)
else:
central_optimizer = torch.optim.SGD(
variables,
arguments.learning_rate,
weight_decay=arguments.weight_decay)
central_lr_scheduler = get_polynomial_decay_schedule_with_warmup(
central_optimizer,
num_warmup_steps=30,
num_training_steps=arguments.central_num_iterations,
lr_end=0.02)
model = PyTorchModel(model=pytorch_model,
local_optimizer_create=torch.optim.SGD,
central_optimizer=central_optimizer,
central_learning_rate_scheduler=central_lr_scheduler)
backend = SimulatedBackend(training_data=training_federated_dataset,
val_data=val_federated_dataset,
postprocessors=[local_privacy, central_privacy])
algorithm, algorithm_params, algorithm_callbacks = get_algorithm(arguments)
model_train_params = NNTrainHyperParams(
local_learning_rate=arguments.local_learning_rate,
local_num_epochs=arguments.local_num_epochs,
local_batch_size=arguments.local_batch_size,
local_max_grad_norm=10.0)
model_eval_params = NNEvalHyperParams(
local_batch_size=arguments.central_eval_batch_size)
# Central evaluation on dev data.
callbacks = [
CentralEvaluationCallback(central_data,
model_eval_params=model_eval_params,
frequency=arguments.evaluation_frequency),
StopwatchCallback(),
AggregateMetricsToDisk('./metrics.csv'),
TrackBestOverallMetrics(
higher_is_better_metric_names=['Central val | macro AP']),
]
if arguments.restore_model_path is not None:
model.load(arguments.restore_model_path)
logger.info(f'Restored model from {arguments.restore_model_path}')
callbacks.extend(algorithm_callbacks)
if arguments.save_model_path is not None:
callbacks.append(ModelCheckpointingCallback(arguments.save_model_path))
if arguments.wandb_project_id:
callbacks.append(
WandbCallback(
wandb_project_id=arguments.wandb_project_id,
wandb_experiment_name=os.environ.get('WANDB_TASK_ID',
str(uuid4())),
# List of dicts to one dict.
wandb_config=dict(vars(arguments)),
tags=os.environ.get('WANDB_TAGS', 'empty-tag').split(','),
group=os.environ.get('WANDB_GROUP', None)))
model = algorithm.run(algorithm_params=algorithm_params,
backend=backend,
model=model,
model_train_params=model_train_params,
model_eval_params=model_eval_params,
callbacks=callbacks)
if __name__ == '__main__':
main()